Hideyuki Higashimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8566796/publications.pdf

Version: 2024-02-01

59 papers 3,279 citations

28 h-index 54 g-index

64 all docs

64
docs citations

64 times ranked 3914 citing authors

#	Article	IF	CITATIONS
1	Enzyme Model-catalyzed Oxidative Copolymerization of Phenol while Continuously Adding an Endcap to Multi-branched Poly(phenylene oxide) Showing Low Dielectric Constant. Chemistry Letters, 2022, 51, 420-423.	0.7	3
2	A new poly(arylene oxide) with an extremely low dielectric constant as a fully aromatic hydrocarbon-type polymer. Polymer, 2021, 237, 124345.	1.8	4
3	Synthesis of Poly(aromatic)s II: Enzyme-Model Complexes as Catalyst. Green Chemistry and Sustainable Technology, 2019, , 307-341.	0.4	1
4	Design and Synthesis of Porous Coordination Polymers with Expanded Oneâ€Dimensional Channels and Strongly Lewisâ€Acidic Sites. ChemNanoMat, 2018, 4, 103-111.	1.5	11
5	Construction of Pt complex within Zr-based MOF and its application for hydrogen production under visible-light irradiation. Research on Chemical Intermediates, 2016, 42, 7679-7688.	1.3	32
6	Synthesis, Properties, and Polymerization of Spiro[(dipyridinogermole)(dithienogermole)]. Organometallics, 2016, 35, 20-26.	1.1	27
7	Cobalt Phenanthroline–Indole Macrocycles as Highly Active Electrocatalysts for Oxygen Reduction. Chemistry - A European Journal, 2014, 20, 14178-14183.	1.7	21
8	Distibylation of Acetylenes with Ph ₂ Sbâ€"SbPh ₂ : Synthesis, Crystal Structures and Phosphorescence Properties of Bis(diphenylstibyl)ethenes. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2014, 69, 1181-1187.	0.3	0
9	Synthesis of Group 14 Dipyridinometalloles with Enhanced Electron-Deficient Properties and Solid-State Phosphorescence. Organometallics, 2014, 33, 517-521.	1.1	39
10	Synthesis and Properties of Nitrogen-Introduced Phenylazomethine Dendrimer. Synthetic Communications, 2014, 44, 2239-2247.	1.1	3
11	A Systematic Study on the Stability of Porous Coordination Polymers against Ammonia. Chemistry - A European Journal, 2014, 20, 15611-15617.	1.7	73
12	Development of a Ru complex-incorporated MOF photocatalyst for hydrogen production under visible-light irradiation. Chemical Communications, 2014, 50, 6779.	2.2	145
13	One-dimensional alignment of strong Lewis acid sites in a porous coordination polymer. Chemical Communications, 2013, 49, 10459.	2.2	39
14	Efficient hydrogen production and photocatalytic reduction of nitrobenzene over a visible-light-responsive metal–organic framework photocatalyst. Catalysis Science and Technology, 2013, 3, 2092.	2.1	198
15	Synthesis of dithienosilole-based highly photoluminescent donor–acceptor type compounds. Dalton Transactions, 2013, 42, 3646.	1.6	19
16	Synthesis, Optical Properties, and Crystal Structures of Dithienostannoles. Organometallics, 2013, 32, 4136-4141.	1.1	32
17	Synthesis and Optical Properties of Dithienostiboles. Chemistry Letters, 2012, 41, 1002-1003.	0.7	24
18	Sol–Gel-derived Bridged Polysilsesquioxane as a Hydrogen Peroxide Decomposition Catalyst: Immobilization of a Dimanganese Complex and Its Improved Thermal Stability. Chemistry Letters, 2012, 41, 591-592.	0.7	0

#	Article	IF	CITATIONS
19	Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal–Organic Framework. Journal of Physical Chemistry C, 2012, 116, 20848-20853.	1.5	551
20	Fused π-extended discotic triangular porphyrinoids. Journal of Porphyrins and Phthalocyanines, 2012, 16, 564-575.	0.4	4
21	Synthesis of π-Conjugated Polymers Containing Fluorinated Arylene Units via Direct Arylation: Efficient Synthetic Method of Materials for OLEDs. Macromolecules, 2012, 45, 4128-4133.	2.2	140
22	Triangular Trinuclear Metal-N ₄ Complexes with High Electrocatalytic Activity for Oxygen Reduction. Journal of the American Chemical Society, 2011, 133, 10372-10375.	6.6	184
23	Synthesis and optical properties of a bis(diphenylphosphino)dithienosiloleâ€digold(I) complex. Heteroatom Chemistry, 2011, 22, 514-517.	0.4	6
24	Synthesis of Dithienobismoles as Novel Phosphorescence Materials. Organometallics, 2010, 29, 3239-3241.	1.1	61
25	Oxidative Dimerization of Phenol Based on Micromixing in Single- And Two-Phase Systems. Industrial & Engineering Chemistry Research, 2008, 47, 7154-7160.	1.8	O
26	é•移金属錯体触媒ã,'用ã¸ã,∢芳香æ—ãƒãƒªãƒžãƒ¼ã®ç²¾å¯†å•戕 Kobunshi, 2008, 57, 138-141.	0.0	0
27	Chain-Growth Polymerization for the Synthesis of Polyfluorene via Suzukiâ^'Miyaura Coupling Reaction from an Externally Added Initiator Unit. Journal of the American Chemical Society, 2007, 129, 7236-7237.	6.6	314
28	Novel vanadium catalyst system with tartaric acid salts for highly selective asymmetric oxidative coupling polymerization. Polymer, 2007, 48, 6565-6570.	1.8	14
29	Asymmetric oxidative coupling polymerization of dihydroxynaphthalene derivatives with cobalt-salen complexes. Polymer Bulletin, 2007, 59, 303-310.	1.7	8
30	Synthesis of Poly (binaphthol)s by Highly Selective Asymmetric Oxidative Coupling Polymerization. Kobunshi Ronbunshu, 2006, 63, 297-305.	0.2	3
31	Oxidative coupling polymerization of 2,3-dihydroxynaphthalene with dinuclear-type copper(II) catalyst. Journal of Polymer Science Part A, 2005, 43, 1635-1640.	2.5	17
32	?Radical-controlled? oxidative polymerization of phenol: Comparison with that of 4-phenoxyphenol. Journal of Polymer Science Part A, 2005, 43, 1955-1962.	2. 5	33
33	New asymmetric vanadium catalyst for highly selective oxidative coupling polymerization. Journal of Polymer Science Part A, 2005, 43, 5872-5878.	2.5	30
34	Radical-Controlled Oxidative Polymerization of Phenols. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2005, 63, 970-981.	0.0	2
35	The most hindered hydrotris(pyrazolyl)borate ligand, X-ray structure of chlorocopper(II) complex: [Cu(Cl){HB(3-Ad-5-Pripz)3}] as compared with [Cu(Cl){HB(3-But-5-Pripz)3}]. Inorganic Chemistry Communication, 2004, 7, 209-212.	1.8	29

#	Article	IF	CITATIONS
37	Ab Initio Calculation on the Reaction Mechanism of "Radical-Controlled―Oxidative Polymerization of Phenols. Bulletin of the Chemical Society of Japan, 2004, 77, 813-818.	2.0	6
38	Oxidative polymerization of phenols revisited. Progress in Polymer Science, 2003, 28, 1015-1048.	11.8	287
39	93 "Radical-controlled―oxidative polymerization of phenols. Studies in Surface Science and Catalysis, 2003, 145, 423-426.	1.5	2
40	140 Reaction path to phenol coupling with copper complex. Studies in Surface Science and Catalysis, 2003, 145, 537-538.	1.5	0
41	Recent Developments in Toransition Metal-Catalyzed Polymerization. II. Highly Regioselective Oxidative Polymerization of Phenols Catalyzed by a Tyrosinase Model Complex Kobunshi Ronbunshu, 2002, 59, 319-331.	0.2	3
42	Regio- and chemo-selective polymerization of phenols catalyzed by oxidoreductase enzyme and its model complexes. Macromolecular Symposia, 2001, 175, 1-10.	0.4	18
43	New crystalline polymers: poly(2,5-dialkyl-1,4-phenylene oxide)s. Macromolecular Rapid Communications, 2000, 21, 1121-1124.	2.0	40
44	Coupling selectivity in the radical-controlled oxidative polymerization of 4-phenoxyphenol catalyzed by (1,4,7-triisopropyl-1,4,7-triazacyclononane)copper(II) complex. Journal of Polymer Science Part A, 2000, 38, 4792-4804.	2.5	26
45	?Radical-controlled? oxidative polymerization of phenols. Substituent effect of phenol monomers on the reaction rate. Polymers for Advanced Technologies, 2000, 11, 733-738.	1.6	28
46	â€~Radical-controlled' oxidative polymerization of m-cresol catalyzed by ν-Î-2:Î-2-peroxo dicopper(II) complex. Journal of Molecular Catalysis A, 2000, 155, 201-207.	4.8	36
47	"Radical-controlled―oxidative polymerization of 4-phenoxyphenol catalyzed by a dicopper complex of a dinucleating ligand. Journal of Molecular Catalysis A, 2000, 161, 233-237.	4.8	19
48	â€~Radical-controlled' oxidative polymerization of o-cresol catalyzed by ν-Î-2:Î-2-peroxo dicopper(II) complex. Applied Catalysis A: General, 2000, 194-195, 427-433.	2.2	31
49	"Radical-Controlled―Oxidative Polymerization of 4-Phenoxyphenol by a Tyrosinase Model Complex Catalyst to Poly(1,4-phenylene oxide). Macromolecules, 2000, 33, 1986-1995.	2.2	90
50	Peroxidase-Catalyzed Oxidative Polymerization of 4,4 -Dihydroxydiphenyl Ether. Formation of α,ω-Hydroxyoligo(1,4-phenylene oxide) through an Unusual Reaction Pathway. Macromolecules, 2000, 33, 9152-9155.	2.2	40
51	Coupling selectivity in the radical-controlled oxidative polymerization of 4-phenoxyphenol catalyzed by (1,4,7-triisopropyl-1,4,7-triazacyclononane)copper(II) complex. Journal of Polymer Science Part A, 2000, 38, 4792-4804.	2.5	3
52	Synthesis of a soluble polyphenol by oxidative polymerization of bisphenol-A using iron-salen complex as catalyst. Polymer Bulletin, 1999, 42, 125-129.	1.7	41
53	OXIDATIVE POLYMERIZATION OF 2,6-DISUBSTITUTED PHENOLS CATALYZED BY IRON-SALEN COMPLEX. Journal of Macromolecular Science - Pure and Applied Chemistry, 1999, 36, 719-730.	1.2	32

Synthesis, Structure and Reactivity of Phenoxo Copper(II) Complexes, Cu(OAr)(HB(3,5-Pri2pz)3) (Ar =) Tj ETQq0 0 0 rgBT /Overlock 10 Td Synthesis, Structure and Reactivity of Phenoxo Copper(II) Complexes, Cu(OAr)(HB(3,5-Pri2pz)3) (Ar =) Tj ETQq0 0 0 rgBT /Overlock 10 Td Synthesis, Structure and Reactivity of Phenoxo Copper(II) Complexes, Cu(OAr)(HB(3,5-Pri2pz)3) (Ar =) Tj ETQq0 0 0 rgBT /Overlock 10 Td Synthesis, Cu(OAr)(HB(3,5-Pri2pz)3) (Ar =) Tj ETQq0 0 0 rgBT /Overlock 10 Td Synthesis, Cu(OAr)(HB(3,5-Pri2pz)3) (Ar =) Tj ETQq0 0 0 rgBT /Overlock 10 Td Synthesis, Cu(OAr)(HB(3,5-Pri2pz)3) (Ar =) Tj ETQq0 0 0 rgBT /Overlock 10 Td Synthesis, Cu(OAr)(HB(3,5-Pri2pz)3) (Ar =) Tj ETQq0 0 0 rgBT /Overlock 10 Td Synthesis (Ar =) Tj ETQq0 0 0 rgBT /Overlock 10 Td Synthesis (Ar =) Tj ETQq0 0 0 rgBT /Overlock 10 Td Synthesis (Ar =) Tj ETQq0 rgBT /Overlock 10 Td Synthesis (Ar =) Tj ETQq0 rgBT /Overlock 10 Td Synthesis (Ar =) Tj ETQq0 rgBT /Overlock 10 Td Synthesis (A

#	Article	IF	CITATIONS
55	Novel highly-regioselective oxidative-polymerization of 4-phenoxyphenol to poly(1,4-phenylene oxide) catalyzed by tyrosinase model complexes. Studies in Surface Science and Catalysis, 1999, 121, 111-116.	1.5	O
56	Highly Regioselective Oxidative Polymerization of 4-Phenoxyphenol to Poly(1,4-phenylene oxide) Catalyzed by Tyrosinase Model Complexes. Journal of the American Chemical Society, 1998, 120, 8529-8530.	6.6	122
57	Urea as the most reactive and versatile nitrogen nucleophile for the palladium(2+)-catalyzed cyclization of unsaturated amines. Journal of the American Chemical Society, 1988, 110, 3994-4002.	6.6	198
58	PdII-Catalyzed Regioselective Arylchlorination and Oxyarylation of Unsaturated Alcohols. Angewandte Chemie International Edition in English, 1986, 25, 735-737.	4.4	36
59	A-(modified B6)-B-[.omegaamino(ethylamino)]betacyclodextrin as an artificial B6 enzyme for chiral aminotransfer reaction. Journal of the American Chemical Society, 1985, 107, 5545-5546.	6.6	78