
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8566689/publications.pdf Version: 2024-02-01

KADEN D HOLL

#	Article	IF	CITATIONS
1	Effects of insect herbivory on seedling mortality in restored and remnant tropical forest. Restoration Ecology, 2022, 30, e13467.	1.4	5
2	Can Nucleation Bridge to Desirable Alternative Stable States? Theory and Applications. Bulletin of the Ecological Society of America, 2022, 103, e01953.	0.2	2
3	Alluring restoration strategies to attract seedâ€dispersing animals need more rigorous testing. Journal of Applied Ecology, 2022, 59, 649-652.	1.9	2
4	Which of the plethora of tree-growing projects to support?. One Earth, 2022, 5, 452-455.	3.6	11
5	Overcoming biotic homogenization in ecological restoration. Trends in Ecology and Evolution, 2022, 37, 777-788.	4.2	31
6	Ecosystem restoration job creation potential in Brazil. People and Nature, 2022, 4, 1426-1434.	1.7	8
7	Vegetative spread is key to applied nucleation success in nonâ€nativeâ€dominated grasslands. Restoration Ecology, 2021, 29, e13330.	1.4	2
8	Degree of intervention affects interannual and withinâ€plot heterogeneity of seed arrival in tropical forest restoration. Journal of Applied Ecology, 2021, 58, 1693.	1.9	5
9	Leaf traits and phylogeny explain plant survival and community dynamics in response to extreme drought in a restored coastal grassland. Journal of Applied Ecology, 2021, 58, 1670-1680.	1.9	14
10	Rewilding and restoring nature in a changing world. PLoS ONE, 2021, 16, e0254249.	1.1	3
11	Proximity and abundance of mother trees affects recruitment patterns in a longâ€ŧerm tropical forest restoration study. Ecography, 2021, 44, 1826-1837.	2.1	7
12	Multiâ€scale habitat selection of key frugivores predicts largeâ€seeded tree recruitment in tropical forest restoration. Ecosphere, 2021, 12, .	1.0	6
13	Exotic eucalypts: From demonized trees to allies of tropical forest restoration?. Journal of Applied Ecology, 2020, 57, 55-66.	1.9	51
14	Inâ€stream habitat and macroinvertebrate responses to riparian corridor length in rangeland streams. Restoration Ecology, 2020, 28, 173-184.	1.4	13
15	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
16	Guidance for successful tree planting initiatives. Journal of Applied Ecology, 2020, 57, 2349-2361.	1.9	148
17	Lessons from the reintroduction of listed plant species in California. Biodiversity and Conservation, 2020, 29, 3703-3716.	1.2	5
18	Mapping carbon accumulation potential from global natural forest regrowth. Nature, 2020, 585, 545-550.	13.7	278

#	Article	IF	CITATIONS
19	Tree planting is not a simple solution. Science, 2020, 368, 580-581.	6.0	265
20	Effects of dispersal†and nicheâ€based factors on tree recruitment in tropical wet forest restoration. Ecological Applications, 2020, 30, e02139.	1.8	18
21	Applied nucleation facilitates tropical forest recovery: Lessons learned from a 15â€year study. Journal of Applied Ecology, 2020, 57, 2316-2328.	1.9	56
22	GERMINATION OF MULTI-YEAR COLLECTIONS OF CALIFORNIA GRASSLAND AND SCRUB SEEDS. Madro $\tilde{A}\pm o,$ 2020, 67, .	0.3	0
23	Lessons on direct seeding to restore Neotropical savanna. Ecological Engineering, 2019, 138, 148-154.	1.6	36
24	What makes ecosystem restoration expensive? A systematic cost assessment of projects in Brazil. Biological Conservation, 2019, 240, 108274.	1.9	88
25	Riparian forest recovery following a decade of cattle exclusion in the Colombian Andes. Forest Ecology and Management, 2019, 452, 117563.	1.4	10
26	Tailoring restoration interventions to the grasslandâ€savannaâ€forest complex in central Brazil. Restoration Ecology, 2019, 27, 942-948.	1.4	27
27	We agree with Larkin <i>et al</i> . 2019: restoration is context specific. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191179.	1.2	2
28	Enrichment planting to restore degraded tropical forest fragments in Brazil. Ecosystems and People, 2019, 15, 3-10.	1.3	29
29	Restoration and repair of Earth's damaged ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172577.	1.2	202
30	Litterfall and nutrient dynamics shift in tropical forest restoration sites after a decade of recovery. Biotropica, 2018, 50, 491-498.	0.8	15
31	Applied nucleation is a straightforward, costâ€effective forest restoration approach: reply to RamÃrezâ€Soto et al. (2018). Restoration Ecology, 2018, 26, 618-619.	1.4	4
32	Homogenizing biodiversity in restoration: the "perennialization―of California prairies. Restoration Ecology, 2018, 26, 1061-1065.	1.4	9
33	Rules of thumb for predicting tropical forest recovery. Applied Vegetation Science, 2018, 21, 669-677.	0.9	31
34	Restoring tropical forests from the bottom up. Science, 2017, 355, 455-456.	6.0	143
35	Guidance Needed on Setting Dynamic Conservation Targets: A Response to Hiers et al Trends in Ecology and Evolution, 2017, 32, 238-239.	4.2	2
36	Protocol for Monitoring Tropical Forest Restoration. Tropical Conservation Science, 2017, 10, 194008291769726.	0.6	66

KAREN D HOLL

#	Article	IF	CITATIONS
37	Research Directions in Tropical Forest Restoration. Annals of the Missouri Botanical Garden, 2017, 102, 237-250.	1.3	51
38	How Long Do Restored Ecosystems Persist?. Annals of the Missouri Botanical Garden, 2017, 102, 258-265.	1.3	38
39	Local tropical forest restoration strategies affect tree recruitment more strongly than does landscape forest cover. Journal of Applied Ecology, 2017, 54, 1091-1099.	1.9	94
40	A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS ONE, 2017, 12, e0171368.	1.1	265
41	Tropical forest restoration enriches vascular epiphyte recovery. Applied Vegetation Science, 2016, 19, 508-517.	0.9	18
42	Cluster planting facilitates survival but not growth in early development of restored tropical forest. Basic and Applied Ecology, 2016, 17, 489-496.	1.2	10
43	Leaf litter arthropod responses to tropical forest restoration. Ecology and Evolution, 2016, 6, 5158-5168.	0.8	53
44	Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration. Ecology and Evolution, 2016, 6, 7253-7262.	0.8	17
45	Functional composition trajectory: a resolution to the debate between Suganuma, Durigan, and Reid. Restoration Ecology, 2016, 24, 1-3.	1.4	45
46	Integrating plant―and animalâ€based perspectives for more effective restoration of biodiversity. Frontiers in Ecology and the Environment, 2016, 14, 37-45.	1.9	126
47	Scaleâ€dependent effects of forest restoration on Neotropical fruit bats. Restoration Ecology, 2015, 23, 681-689.	1.4	9
48	Passive restoration can be an effective strategy: a reply to Prach and del Moral (2015). Restoration Ecology, 2015, 23, 347-348.	1.4	5
49	Predation and aridity slow down the spread of 21-year-old planted woodland islets in restored Mediterranean farmland. New Forests, 2015, 46, 841-853.	0.7	35
50	Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biological Conservation, 2015, 186, 287-295.	1.9	212
51	Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology, 2015, 103, 978-989.	1.9	131
52	Seed dispersal limitations shift over time in tropical forest restoration. Ecological Applications, 2015, 25, 1072-1082.	1.8	108
53	Efficacy of Exotic Control Strategies for Restoring Coastal Prairie Grasses. Invasive Plant Science and Management, 2014, 7, 590-598.	0.5	19
54	Maritime climate influence on chaparral composition and diversity in the coast range of central California. Ecology and Evolution, 2014, 4, 3662-3674.	0.8	12

KAREN D HOLL

#	Article	IF	CITATIONS
55	Factors explaining variability in woody above-ground biomass accumulation in restored tropical forest. Forest Ecology and Management, 2014, 319, 36-43.	1.4	72
56	Hidden Costs of Passive Restoration. Restoration Ecology, 2014, 22, 284-287.	1.4	138
57	Landscape Context Mediates Avian Habitat Choice in Tropical Forest Restoration. PLoS ONE, 2014, 9, e90573.	1.1	43
58	Testing heterogeneity–diversity relationships in tropical forest restoration. Oecologia, 2013, 173, 569-578.	0.9	59
59	Arrival ≠Survival. Restoration Ecology, 2013, 21, 153-155.	1.4	78
60	Artificial bare patches increase habitat for the endangered Ohlone tiger beetle (Cicindela ohlone). Journal of Insect Conservation, 2013, 17, 17-22.	0.8	18
61	Testing applied nucleation as a strategy to facilitate tropical forest recovery. Journal of Applied Ecology, 2013, 50, 88-96.	1.9	154
62	Phylogenetic ecology applied to enrichment planting of tropical native tree species. Forest Ecology and Management, 2013, 297, 57-66.	1.4	30
63	Migratory bird species in young tropical forest restoration sites: effects of vegetation height, planting design, and season. Bird Conservation International, 2012, 22, 94-105.	0.7	16
64	Applied nucleation as a forest restoration strategy. Forest Ecology and Management, 2012, 265, 37-46.	1.4	240
65	Do birds bias measurements of seed rain?. Journal of Tropical Ecology, 2012, 28, 421-422.	0.5	4
66	Direct seeding of late-successional trees to restore tropical montane forest. Forest Ecology and Management, 2011, 261, 1590-1597.	1.4	153
67	When and where to actively restore ecosystems?. Forest Ecology and Management, 2011, 261, 1558-1563.	1.4	570
68	There's no place like home. Frontiers in Ecology and the Environment, 2011, 9, 318-318.	1.9	0
69	Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecology Letters, 2011, 14, 274-281.	3.0	88
70	Successional Models as Guides for Restoration of Riparian Forest Understory. Restoration Ecology, 2011, 19, 280-289.	1.4	53
71	Planting Seedlings in Tree Islands Versus Plantations as a Large cale Tropical Forest Restoration Strategy. Restoration Ecology, 2011, 19, 470-479.	1.4	141
72	Litterfall Dynamics Under Different Tropical Forest Restoration Strategies in Costa Rica. Biotropica, 2011, 43, 279-287.	0.8	66

KAREN D HOLL

#	Article	IF	CITATIONS
73	Manipulating disturbance regimes and seeding to restore mesic Mediterranean grasslands. Applied Vegetation Science, 2011, 14, 304-315.	0.9	7
74	Direct Seeding to Restore Tropical Matureâ€Forest Species in Areas of Slashâ€andâ€Burn Agriculture. Restoration Ecology, 2010, 18, 438-445.	1.4	59
75	Writing for an International Audience. Restoration Ecology, 2010, 18, 135-137.	1.4	6
76	Patch size effects on avian foraging behaviour: implications for tropical forest restoration design. Journal of Applied Ecology, 2010, 47, 130-138.	1.9	43
77	Biodiversity conservation in human-modified landscapes of Mesoamerica: Past, present and future. Biological Conservation, 2010, 143, 2301-2313.	1.9	162
78	Patch Size and Tree Species Influence the Number and Duration of Bird Visits in Forest Restoration Plots in Southern Costa Rica. Restoration Ecology, 2009, 17, 479-486.	1.4	53
79	Comparing the Performance of Tree Stakes and Seedlings to Restore Abandoned Tropical Pastures. Restoration Ecology, 2009, 17, 854-864.	1.4	64
80	Agroâ€Successional Restoration as a Strategy to Facilitate Tropical Forest Recovery. Restoration Ecology, 2009, 17, 451-459.	1.4	127
81	Reintroduction ofNassella pulchrato California coastal grasslands: Effects of topsoil removal, plant neighbour removal and grazing. Applied Vegetation Science, 2008, 11, 195-204.	0.9	30
82	Are There Benefits of Bat Roosts for Tropical Forest Restoration?. Conservation Biology, 2008, 22, 1090-1090.	2.4	2
83	ECOLOGICAL RESTORATION IN CALIFORNIA: CHALLENGES AND PROSPECTS. Madroño, 2007, 54, 215-224.	0.3	7
84	RESTORING NATIVE GRASSES AS VEGETATIVE BUFFERS IN A COASTAL CALIFORNIA AGRICULTURAL LANDSCAPE. Madroño, 2007, 54, 249-257.	0.3	9
85	Seed banks in plant conservation: Case study of Santa Cruz tarplant restoration. Biological Conservation, 2007, 135, 57-66.	1.9	39
86	Does Restoration Enhance Regeneration of Seasonal Deciduous Forests in Pastures in Central Brazil?. Restoration Ecology, 2007, 15, 462-471.	1.4	94
87	Foundations of Restoration Ecology ―Edited by Donald A. Falk, Margaret A. Palmer, and Joy B. Zedler. Restoration Ecology, 2007, 15, 592-593.	1.4	1
88	Effects of Habitat, Cattle Grazing and Selective Logging on Seedling Survival and Growth in Dry Forests of Central Brazil. Biotropica, 2007, 39, 269-274.	0.8	25
89	Regeneration of Seasonal Deciduous Forest Tree Species in Long-Used Pastures in Central Brazil. Biotropica, 2007, 39, 655-659.	0.8	43
90	Challenges to Introducing and Managing Disturbance Regimes for Holocarpha macradenia, an Endangered Annual Grassland Forb. Conservation Biology, 2006, 20, 1121-1131.	2.4	30

#	Article	IF	CITATIONS
91	Effect of Seed Source, Topsoil Removal, and Plant Neighbor Removal on Restoring California Coastal Prairies. Restoration Ecology, 2006, 14, 569-577.	1.4	41
92	Contrasting demographies and persistence of rare annual plants in highly variable environments. Plant Ecology, 2006, 183, 157-170.	0.7	12
93	Tropical dry-forest regeneration from root suckers in Central Brazil. Journal of Tropical Ecology, 2006, 22, 353-357.	0.5	49
94	HAWAIIAN HONEYCREEPER HOME RANGE SIZE VARIES WITH HABITAT: IMPLICATIONS FOR NATIVE ACACIA KOA FORESTRY. , 2005, 15, 1053-1061.		49
95	Importance of Hydrologic and Landscape Heterogeneity for Restoring Bank Swallow (Riparia riparia) Colonies along the Sacramento River, California. Restoration Ecology, 2005, 13, 391-402.	1.4	13
96	Applicability of landscape and island biogeography theory to restoration of riparian understorey plants. Journal of Applied Ecology, 2004, 41, 922-933.	1.9	77
97	Cattle Grazing Impacts on Annual Forbs and Vegetation Composition of Mesic Grasslands in California. Conservation Biology, 2003, 17, 1694-1702.	2.4	175
98	Siteâ€specific responses of native and exotic species to disturbances in a mesic grassland community. Applied Vegetation Science, 2003, 6, 235-244.	0.9	32
99	Landscape Restoration: Moving from Generalities to Methodologies. BioScience, 2003, 53, 491.	2.2	151
100	Site-specific responses of native and exotic species to disturbances in a mesic grassland community. Applied Vegetation Science, 2003, 6, 235.	0.9	9
101	Monitoring and appraisal. , 2002, , 411-432.		39
102	Effect of shrubs on tree seedling establishment in an abandoned tropical pasture. Journal of Ecology, 2002, 90, 179-187.	1.9	184
103	Long-term vegetation recovery on reclaimed coal surface mines in the eastern USA. Journal of Applied Ecology, 2002, 39, 960-970.	1.9	190
104	Photosynthetic responses of tree seedlings in grass and under shrubs in early-successional tropical old fields, Costa Rica. Oecologia, 2001, 127, 40-50.	0.9	41
105	Paying for Restoration. Restoration Ecology, 2000, 8, 260-267.	1.4	131
106	Tropical Montane Forest Restoration in Costa Rica: Overcoming Barriers to Dispersal and Establishment. Restoration Ecology, 2000, 8, 339-349.	1.4	470
107	Seed Banks of Maritime Chaparral and Abandoned Roads: Potential for Vegetation Recovery. Journal of the Torrey Botanical Society, 2000, 127, 207.	0.1	16
108	Photosynthetic Responses to Light for Rainforest Seedlings Planted in Abandoned Pasture, Costa Rica. Restoration Ecology, 1999, 7, 382-391.	1.4	44

#	Article	IF	CITATIONS
109	Factors Limiting Tropical Rain Forest Regeneration in Abandoned Pasture: Seed Rain, Seed Germination, Microclimate, and Soil1. Biotropica, 1999, 31, 229-242.	0.8	472
110	Tropical forest recovery and restoration. Trends in Ecology and Evolution, 1999, 14, 378-379.	4.2	42
111	The effect of rabbit herbivory on reforestation of abandoned pasture in southern Costa Rica. Biological Conservation, 1999, 87, 391-395.	1.9	38
112	Knowledge of and attitudes toward population growth and the environment: university students in Costa Rica and the United States. Environmental Conservation, 1999, 26, 66-74.	0.7	20
113	Do Bird Perching Structures Elevate Seed Rain and Seedling Establishment in Abandoned Tropical Pasture?. Restoration Ecology, 1998, 6, 253-261.	1.4	188
114	Effects of above- and below-ground competition of shrubs and grass on Calophyllum brasiliense (Camb.) seedling growth in abandoned tropical pasture. Forest Ecology and Management, 1998, 109, 187-195.	1.4	88
115	TROPICAL MOIST FOREST RESTORATION ON AGRICULTURAL LAND IN LATIN AMERICA. , 1998, , 25-41.		4
116	Effects of Species, Habitat, and Distance from Edge on Post-dispersal Seed Predation in a Tropical Rainforest1. Biotropica, 1997, 29, 459-468.	0.8	134
117	The Effect of Coal Surface Mine Reclamation on Diurnal Lepidopteran Conservation. Journal of Applied Ecology, 1996, 33, 225.	1.9	46
118	Nectar Resources and Their Influence on Butterfly Communities on Reclaimed Coal Surface Mines. Restoration Ecology, 1995, 3, 76-85.	1.4	72
119	Knowledge and Perceptions in Costa Rica Regarding Environment, Population, and Biodiversity Issues. Conservation Biology, 1995, 9, 1548-1558.	2.4	25
120	Vegetational Community Development on Reclaimed Coal Surface Mines in Virginia. Bulletin of the Torrey Botanical Club, 1994, 121, 327.	0.6	61
121	The Fertility Plateau in Costa Rica: a Review of Causes and Remedies. Environmental Conservation, 1993, 20, 317-323.	0.7	11
122	Integrated Pest Management in Latin America. Environmental Conservation, 1990, 17, 341-350.	0.7	14