
Joel Nargeot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8566656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapeutic Peptides to Treat Myocardial Ischemia-Reperfusion Injury. Frontiers in Cardiovascular Medicine, 2022, 9, 792885.	1.1	14
2	PPARβ∫δ priming enhances the anti-apoptotic and therapeutic properties of mesenchymal stromal cells in myocardial ischemia–reperfusion injury. Stem Cell Research and Therapy, 2022, 13, 167.	2.4	4
3	PPARβ Î^´Is Required for Mesenchymal Stem Cell Cardioprotective Effects Independently of Their Anti-inflammatory Properties in Myocardial Ischemia-Reperfusion Injury. Frontiers in Cardiovascular Medicine, 2021, 8, 681002.	1.1	2
4	A novel therapeutic peptide targeting myocardial reperfusion injury. Cardiovascular Research, 2020, 116, 633-644.	1.8	14
5	Concomitant genetic ablation of L-type Cav1.3 (α1D) and T-type Cav3.1 (α1C) Ca2+ channels disrupts heart automaticity. Scientific Reports, 2020, 10, 18906.	1.6	33
6	Anti-apoptotic peptide for long term cardioprotection in a mouse model of myocardial ischemia–reperfusion injury. Scientific Reports, 2020, 10, 18116.	1.6	7
7	The cardioprotective effects of secretory leukocyte protease inhibitor against myocardial ischemia/reperfusion injury. Experimental and Therapeutic Medicine, 2018, 15, 5231-5242.	0.8	22
8	Acute and long-term cardioprotective effects of the Traditional Chinese Medicine MLC901 against myocardial ischemia-reperfusion injury in mice. Scientific Reports, 2017, 7, 14701.	1.6	21
9	Cardiac mGluR1 metabotropic receptors in cardioprotection. Cardiovascular Research, 2017, 113, 644-655.	1.8	9
10	Comment on: 'Homozygous knockout of the piezo1 gene in the zebrafish is not associated with anemia. Haematologica, 2016, 101, e38-e38.	1.7	4
11	G protein-gated <i>I</i> _{<i>KACh</i>} channels as therapeutic targets for treatment of sick sinus syndrome and heart block. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E932-41.	3.3	47
12	L-type Ca _v 1.3 channels regulate ryanodine receptor-dependent Ca ²⁺ release during sino-atrial node pacemaker activity. Cardiovascular Research, 2016, 109, 451-461.	1.8	88
13	The Low-Threshold Calcium Channel Cav3.2 Determines Low-Threshold Mechanoreceptor Function. Cell Reports, 2015, 10, 370-382.	2.9	154
14	Piezo1 plays a role in erythrocyte volume homeostasis. Haematologica, 2014, 99, 70-75.	1.7	119
15	Cardiac arrhythmia induced by genetic silencing of â€~funny' (f) channels is rescued by GIRK4 inactivation. Nature Communications, 2014, 5, 4664.	5.8	70
16	<i>piezo2b</i> Regulates Vertebrate Light Touch Response. Journal of Neuroscience, 2013, 33, 17089-17094.	1.7	75
17	Down-regulation of the transcription factor ZAC1 upon pre- and postconditioning protects against I/R injury in the mouse myocardium. Cardiovascular Research, 2012, 94, 351-358.	1.8	14
18	The case for the funny current and the calcium clock. Heart Rhythm, 2012, 9, 616-618.	0.3	23

Joel Nargeot

#	Article	IF	CITATIONS
19	Delayed Postconditioning: Not Too Late?. Trends in Cardiovascular Medicine, 2012, 22, 173-179.	2.3	9
20	Systemic delivery of BH4 anti-apoptotic peptide using CPPs prevents cardiac ischemia–reperfusion injuries in vivo. Journal of Controlled Release, 2011, 156, 146-153.	4.8	37
21	Delayed Postconditioning in the Mouse Heart In Vivo. Circulation, 2011, 124, 1330-1336.	1.6	80
22	Functional roles of Ca _v 1.3, Ca _v 3.1 and HCN channels in automaticity of mouse atrioventricular cells. Channels, 2011, 5, 251-261.	1.5	80
23	T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11268-11273.	3.3	129
24	Identification of Potential Pharmacological Targets by Analysis of the Comprehensive G Protein-Coupled Receptor Repertoire in the Four Cardiac Chambers. Molecular Pharmacology, 2009, 75, 1108-1116.	1.0	29
25	Genesis and Regulation of the Heart Automaticity. Physiological Reviews, 2008, 88, 919-982.	13.1	512
26	Myocardial Expression of a Dominant-Negative Form of Daxx Decreases Infarct Size and Attenuates Apoptosis in an In Vivo Mouse Model of Ischemia/Reperfusion Injury. Circulation, 2007, 116, 2709-2717.	1.6	34
27	Voltage-dependent calcium channels and cardiac pacemaker activity: From ionic currents to genes. Progress in Biophysics and Molecular Biology, 2006, 90, 38-63.	1.4	99
28	Bradycardia and Slowing of the Atrioventricular Conduction in Mice Lacking Ca V 3.1/α 1G T-Type Calcium Channels. Circulation Research, 2006, 98, 1422-1430.	2.0	275
29	Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. Journal of Physiology, 2005, 562, 223-234.	1.3	282
30	Morphine mimics the antiapoptotic effect of preconditioning via an Ins(1,4,5)P3 signaling pathway in rat ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H83-H88.	1.5	24
31	Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO Journal, 2005, 24, 315-324.	3.5	388
32	Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5543-5548.	3.3	428