
Sergei I Belousov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8566636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface Dilatational Rheology of Carboxyl-Containing Dimethylsiloxane Oligomers in Langmuir Films at the Air-Water Interface. BioNanoScience, 2021, 11, 755-761.	3.5	0
2	Effect of Low-Molecular-Mass Additives on Structure and Properties of Nonwoven Materials Prepared by Electrospinning of Polypropylene Melts. Fibre Chemistry, 2021, 52, 366-370.	0.2	1
3	Tribological, Physicomechanical, and Other Properties of Composites Based on Ultra-High Molecular-Weight Polyethylene, Polytetrafluoroethylene, and Еthylene–Tetrafluoroethylene Copolymer with Quasicrystalline Filler Al–Cu–Fe. Crystallography Reports, 2021, 66, 883-896.	0.6	3
4	Effect of Friction on the Degree of Crystallinity of Composite Materials Based on Ultra-high-molecular-weight Polyethylene and Polytetrafluoroethylene with Quasicrystalline Filler Al–Cu–Fe. Crystallography Reports, 2020, 65, 622-626.	0.6	4
5	Rheological Behavior of Polydimethylsiloxane Langmuir Layers at the Air-Water Interface. BioNanoScience, 2020, 10, 403-408.	3.5	6
6	Dielectric Properties of Halloysite Nanotube Suspensions in Polydimethylsiloxane. Russian Journal of Physical Chemistry A, 2020, 94, 376-381.	0.6	7
7	Orientation of Layered Aluminosilicates Particles with a High Aspect Ratio in Paraffin under an Electric Field. Doklady Physics, 2019, 64, 249-252.	0.7	2
8	Effect of diamond nanoparticle chains on rheological properties of hydrosol. Diamond and Related Materials, 2018, 83, 141-145.	3.9	22
9	Electrospinning of Nonwoven Fabrics from Polypropylene Melt with Additions of Stearates of Divalent Metals. Fibre Chemistry, 2018, 50, 27-32.	0.2	12
10	Composite Material Based on Polytetrafluoroethylene and Al–Cu–Fe Quasi-Crystal Filler with Ultralow Wear: Morphology, Tribological, and Mechanical Properties. Journal of Surface Investigation, 2018, 12, 277-285.	0.5	10
11	Influence of Molecular Characteristics of Chitosan on Properties of In situ Formed Scaffolds. BioNanoScience, 2017, 7, 492-495.	3.5	7
12	Tribological and mechanical properties of composites based on ethylene-tetrafluoroethylene and quasicrystalline Alâ^'Cuâ^'Fe filler. Journal of Surface Investigation, 2017, 11, 315-321.	0.5	7
13	Nonwoven materials based on polyethylene oxide for use as a polymer electrolyte in memristive devices. Russian Journal of Applied Chemistry, 2017, 90, 1540-1544.	0.5	0
14	Effect of low molecular additives on the electrospinning of nonwoven materials from a polyamide-6 melt. Polymer Science - Series A, 2016, 58, 236-245.	1.0	19
15	Electrospinning of Non-Woven Materials from the Melt of Polyamide-6 with Added Magnesium, Calcium, and Zinc Stearates. Fibre Chemistry, 2015, 47, 14-19.	0.2	11
16	Effect of a quasicrystalline filler on the tribological properties of a composite based on ultrahigh-molecular-weight polyethylene. Journal of Surface Investigation, 2015, 9, 1077-1084.	0.5	8
17	Rheological Features of Fiber Spinning from Polyacrylonitrile Solutions in an Electric Field. Structure and Properties. Fibre Chemistry, 2014, 46, 151-160.	0.2	16
18	Structure and properties of layered silicate nanocomposites based on polyamide-6 obtained by polymerization in situ and melt blending. Nanotechnologies in Russia, 2013, 8, 765-772.	0.7	4

SERGEI I BELOUSOV

#	Article	IF	CITATIONS
19	Influence of electrorheological characteristics of polymer mixture melts on the structure and properties of non-cloth materials. Fibre Chemistry, 2012, 43, 417-420.	0.2	6
20	Method of manufacturing nonwovens by electrospinning from polymer melts. Fibre Chemistry, 2009, 41, 355-359.	0.2	35
21	Reactions between components and component compatibility in poly(butylene) Tj ETQq1 1 0.784314 rgBT /Over	lock 10 Tf 0.2	50 662 To
22	Effect of orientation stretch on structure of a composite fibre based on high-density polyethylene and polybutylene terephthalate. Fibre Chemistry, 1990, 21, 407-411.	0.2	0
23	Rheological properties of a fibre-forming composition based on high-density polyethylene and polybutylene terephthalate. Fibre Chemistry, 1989, 20, 247-250.	0.2	0
24	Structure of oriented fibres on the basis of high density polyethylene and polyethyleneterephthalate in a broad temperature range. Polymer Science USSR, 1989, 31, 933-940.	0.2	1
25	Formation of a phase structure of the ?fibrils in matrix? type in a composite fibre based on high-density polyethylene and polyethylene terephthalate. Fibre Chemistry, 1988, 19, 277-280.	0.2	1
26	Orientation stretching of a composite fibre based on high-density polyethylene and polyethylene terephthalate. Fibre Chemistry, 1988, 20, 21-24.	0.2	0