## Fiona M O'connor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8566616/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                    | IF                        | CITATIONS     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|
| 1  | Development and evaluation of an Earth-System model – HadGEM2. Geoscientific Model Development, 2011, 4, 1051-1075.                                        | 1.3                       | 1,141         |
| 2  | The HadGEM2-ES implementation of CMIP5 centennial simulations. Geoscientific Model Development, 2011, 4, 543-570.                                          | 1.3                       | 803           |
| 3  | The HadGEM2 family of Met Office Unified Model climate configurations. Geoscientific Model Development, 2011, 4, 723-757.                                  | 1.3                       | 765           |
| 4  | UKESM1: Description and Evaluation of the U.K. Earth System Model. Journal of Advances in Modeling<br>Earth Systems, 2019, 11, 4513-4558.                  | 1.3                       | 448           |
| 5  | Global air quality and climate. Chemical Society Reviews, 2012, 41, 6663.                                                                                  | 18.7                      | 428           |
| 6  | Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI).<br>Geoscientific Model Development, 2017, 10, 639-671.   | 1.3                       | 277           |
| 7  | Evaluation of the new UKCA climate-composition model – Part 1: The stratosphere. Geoscientific Model Development, 2009, 2, 43-57.                          | 1.3                       | 243           |
| 8  | Tropospheric bromine chemistry and its impacts on ozone: A model study. Journal of Geophysical Research, 2005, 110, .                                      | 3.3                       | 234           |
| 9  | Prolonged stratospheric ozone loss in the 1995–96 Arctic winter. Nature, 1997, 389, 835-838.                                                               | 13.7                      | 216           |
| 10 | Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review. Reviews of Geophysics, 2010, 48, . | 9.0                       | 199           |
| 11 | Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere. Geoscientific<br>Model Development, 2014, 7, 41-91.                        | 1.3                       | 191           |
| 12 | Strong constraints on aerosol–cloud interactions from volcanic eruptions. Nature, 2017, 546,<br>485-491.                                                   | 13.7                      | 191           |
| 13 | Effective radiative forcing and adjustments in CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 9591-9618.                                       | 1.9                       | 149           |
| 14 | Global modeling of biogenic bromocarbons. Journal of Geophysical Research, 2006, 111, .                                                                    | 3.3                       | 138           |
| 15 | Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmospheric Chemistry and Physics, 2018, 18, 8409-8438.               | 1.9                       | 128           |
| 16 | Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn) Tj ETQq0                                                   | ) 0 0 <sub>1.5</sub> BT / | Overlock 10 T |
| 17 | Historical and future changes in air pollutants from CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 14547-14579.                               | 1.9                       | 105           |

Air quality modelling using the Met Office Unified Model (AQUM OS24-26): model description and initial evaluation. Geoscientific Model Development, 2013, 6, 353-372. 18 1.3 97

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing<br>and its surrounding region (APHH-Beijing)†Atmospheric Chemistry and Physics, 2019, 19, 7519-7546.             | 1.9 | 95        |
| 20 | Chemical Ozone Loss in the Arctic Winter 1994/95 as Determined by the Match Technique. Journal of Atmospheric Chemistry, 1999, 32, 35-59.                                                                                | 1.4 | 90        |
| 21 | The World Avoided by the Montreal Protocol. Geophysical Research Letters, 2008, 35, .                                                                                                                                    | 1.5 | 90        |
| 22 | Tropospheric ozone in CMIP6 simulations. Atmospheric Chemistry and Physics, 2021, 21, 4187-4218.                                                                                                                         | 1.9 | 89        |
| 23 | Implementation of the Fast-JX Photolysis scheme (v6.4) into the UKCA component of the MetUM chemistry-climate model (v7.3). Geoscientific Model Development, 2013, 6, 161-177.                                           | 1.3 | 84        |
| 24 | Implementation of U.K. Earth System Models for CMIP6. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001946.                                                                                            | 1.3 | 83        |
| 25 | Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations.<br>Geoscientific Model Development, 2020, 13, 6383-6423.                                                                 | 1.3 | 83        |
| 26 | Climate change impacts on human health over Europe through its effect on air quality. Environmental<br>Health, 2017, 16, 118.                                                                                            | 1.7 | 80        |
| 27 | The impact of biogenic, anthropogenic, and biomass burning volatile organic compound emissions on regional and seasonal variations in secondary organic aerosol. Atmospheric Chemistry and Physics, 2018, 18, 7393-7422. | 1.9 | 71        |
| 28 | Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nature Communications, 2018, 9, 206.                                                                                             | 5.8 | 69        |
| 29 | Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison.<br>Atmospheric Chemistry and Physics, 2021, 21, 853-874.                                                           | 1.9 | 65        |
| 30 | Title is missing!. Journal of Atmospheric Chemistry, 1998, 30, 187-207.                                                                                                                                                  | 1.4 | 64        |
| 31 | Aerosol microphysics simulations of the Mt.~Pinatubo eruption with the UM-UKCA composition-climate model. Atmospheric Chemistry and Physics, 2014, 14, 11221-11246.                                                      | 1.9 | 62        |
| 32 | Estimating photochemically produced ozone throughout a domain using flight data and a Lagrangian<br>model. Journal of Geophysical Research, 2003, 108, n/a-n/a.                                                          | 3.3 | 56        |
| 33 | Forest fire plumes over the North Atlantic: p-TOMCAT model simulations with aircraft and satellite measurements from the ITOP/ICARTT campaign. Journal of Geophysical Research, 2007, 112, .                             | 3.3 | 55        |
| 34 | Impacts of climate change, ozone recovery, and increasing methane on surface ozone and the<br>tropospheric oxidizing capacity. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1028-1041.                     | 1.2 | 55        |
| 35 | Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP.<br>Atmospheric Chemistry and Physics, 2020, 20, 12905-12920.                                                             | 1.9 | 55        |
| 36 | Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period. Atmospheric Chemistry and Physics, 2019, 19, 13701-13723.                        | 1.9 | 52        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Revisiting the Mystery of Recent Stratospheric Temperature Trends. Geophysical Research Letters, 2018, 45, 9919-9933.                                                                            | 1.5 | 51        |
| 38 | Processes Controlling Tropical Tropopause Temperature and Stratospheric Water Vapor in Climate<br>Models. Journal of Climate, 2015, 28, 6516-6535.                                               | 1.2 | 47        |
| 39 | The impact of future emission policies on tropospheric ozone using a parameterised approach.<br>Atmospheric Chemistry and Physics, 2018, 18, 8953-8978.                                          | 1.9 | 47        |
| 40 | Historical total ozone radiative forcing derived from CMIP6 simulations. Npj Climate and Atmospheric<br>Science, 2020, 3, .                                                                      | 2.6 | 44        |
| 41 | Atmospheric methane removal: a research agenda. Philosophical Transactions Series A, Mathematical,<br>Physical, and Engineering Sciences, 2021, 379, 20200454.                                   | 1.6 | 44        |
| 42 | An intercomparison of ground-based UV-visible sensors of ozone and NO2. Journal of Geophysical Research, 1997, 102, 1411-1422.                                                                   | 3.3 | 43        |
| 43 | No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI. Atmospheric Chemistry and Physics, 2018, 18, 11277-11287.                       | 1.9 | 41        |
| 44 | Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo.<br>Atmospheric Chemistry and Physics, 2010, 10, 7117-7125.                                        | 1.9 | 39        |
| 45 | Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics, 2021, 21, 1105-1126.                                                             | 1.9 | 39        |
| 46 | Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model<br>Initiative (CCMI) models. Environmental Research Letters, 2018, 13, 054024.                    | 2.2 | 38        |
| 47 | Global sensitivity analysis of chemistry–climate model budgets of tropospheric ozone and OH:<br>exploring model diversity. Atmospheric Chemistry and Physics, 2020, 20, 4047-4058.               | 1.9 | 38        |
| 48 | Understanding the glacial methane cycle. Nature Communications, 2017, 8, 14383.                                                                                                                  | 5.8 | 37        |
| 49 | Quantifying the impact of current and future concentrations of air pollutants on respiratory disease risk in England. Environmental Health, 2017, 16, 29.                                        | 1.7 | 35        |
| 50 | The Met Office HadGEM3-ES chemistry–climate model: evaluation of stratospheric dynamics and its impact on ozone. Geoscientific Model Development, 2017, 10, 1209-1232.                           | 1.3 | 34        |
| 51 | Methane removal and the proportional reductions in surface temperature and ozone. Philosophical<br>Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20210104. | 1.6 | 33        |
| 52 | The Impact of Changes in Cloud Water pH on Aerosol Radiative Forcing. Geophysical Research Letters,<br>2019, 46, 4039-4048.                                                                      | 1.5 | 31        |
| 53 | Climate and air quality impacts due to mitigation of non-methane near-term climate forcers.<br>Atmospheric Chemistry and Physics, 2020, 20, 9641-9663.                                           | 1.9 | 30        |
| 54 | Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data. Atmospheric Chemistry and Physics, 2014, 14, 13257-13280.                              | 1.9 | 29        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Assessment of pre-industrial to present-day anthropogenic climate forcing in UKESM1. Atmospheric Chemistry and Physics, 2021, 21, 1211-1243.                                                                                     | 1.9 | 29        |
| 56 | Accuracy of measurements of total ozone by a SAOZ ground-based zenith sky visible spectrometer.<br>Journal of Geophysical Research, 1997, 102, 1379-1390.                                                                        | 3.3 | 27        |
| 57 | Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the<br>SOCOLv3 chemistry–climate model. Atmospheric Chemistry and Physics, 2018, 18, 16155-16172.                                       | 1.9 | 27        |
| 58 | The influence of model spatial resolution on simulated ozone and fine particulate matter for Europe:<br>implications for health impact assessments. Atmospheric Chemistry and Physics, 2018, 18, 5765-5784.                      | 1.9 | 27        |
| 59 | Climate change penalty and benefit on surface ozone: a global perspective based on CMIP6 earth system models. Environmental Research Letters, 2022, 17, 024014.                                                                  | 2.2 | 27        |
| 60 | Comparison and visualisation of high-resolution transport modelling with aircraft measurements.<br>Atmospheric Science Letters, 2005, 6, 164-170.                                                                                | 0.8 | 26        |
| 61 | Observation of near-zero ozone concentrations in the upper troposphere at mid-latitudes.<br>Geophysical Research Letters, 1998, 25, 1173-1176.                                                                                   | 1.5 | 25        |
| 62 | Interactions between tropospheric chemistry and climate model temperature and humidity biases.<br>Geophysical Research Letters, 2009, 36, .                                                                                      | 1.5 | 22        |
| 63 | 300 years of tropospheric ozone changes using CMIP6 scenarios with a parameterised approach.<br>Atmospheric Environment, 2019, 213, 686-698.                                                                                     | 1.9 | 22        |
| 64 | Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative.<br>Atmospheric Chemistry and Physics, 2019, 19, 10087-10110.                                                                 | 1.9 | 22        |
| 65 | Meteorological drivers and mortality associated with O3 and PM2.5 air pollution episodes in the UK in 2006. Atmospheric Environment, 2019, 213, 699-710.                                                                         | 1.9 | 21        |
| 66 | The Impact of Prescribed Ozone in Climate Projections Run With HadGEM3â€GC3.1. Journal of Advances in<br>Modeling Earth Systems, 2019, 11, 3443-3453.                                                                            | 1.3 | 20        |
| 67 | Evaluation of natural aerosols in CRESCENDO Earth system models (ESMs): mineral dust. Atmospheric<br>Chemistry and Physics, 2021, 21, 10295-10335.                                                                               | 1.9 | 20        |
| 68 | A quantitative analysis of grid-related systematic errors in oxidising capacity and ozone production rates in chemistry transport models. Atmospheric Chemistry and Physics, 2004, 4, 1781-1795.                                 | 1.9 | 19        |
| 69 | Contrasting chemical environments in summertime for atmospheric ozone across major Chinese<br>industrial regions: the effectiveness of emission control strategies. Atmospheric Chemistry and<br>Physics, 2021, 21, 10689-10706. | 1.9 | 18        |
| 70 | The role of future anthropogenic methane emissions in air quality and climate. Npj Climate and<br>Atmospheric Science, 2022, 5, .                                                                                                | 2.6 | 18        |
| 71 | Reappraisal of the Climate Impacts of Ozoneâ€Depleting Substances. Geophysical Research Letters, 2020,<br>47, e2020GL088295.                                                                                                     | 1.5 | 16        |
| 72 | Influence of Arctic stratospheric ozone on surface climate in CCMI models. Atmospheric Chemistry and Physics, 2019, 19, 9253-9268.                                                                                               | 1.9 | 15        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A description and evaluation of an air quality model nested within global and regional composition-climate models using MetUM. Geoscientific Model Development, 2017, 10, 3941-3962.                    | 1.3 | 14        |
| 74 | Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions.<br>Environmental Research Letters, 0, , .                                                         | 2.2 | 14        |
| 75 | Observations of Streamers in the Troposphere and Stratosphere Using Ozone Lidar. Journal of Atmospheric Chemistry, 2001, 38, 295-315.                                                                   | 1.4 | 13        |
| 76 | Regional Features of Long-Term Exposure to PM2.5 Air Quality over Asia under SSP Scenarios Based on<br>CMIP6 Models. International Journal of Environmental Research and Public Health, 2021, 18, 6817. | 1.2 | 10        |
| 77 | No Robust Evidence of Future Changes in Major Stratospheric Sudden Warmings: A Multi-model Assessment from CCMI. Atmospheric Chemistry and Physics, 2018, 18, 11277-11287.                              | 1.9 | 10        |
| 78 | Tropospheric ozone changes and ozone sensitivity from the present day to the future under shared socio-economic pathways. Atmospheric Chemistry and Physics, 2022, 22, 1209-1227.                       | 1.9 | 10        |
| 79 | Changes in anthropogenic precursor emissions drive shifts in the ozone seasonal cycle throughout the northern midlatitude troposphere. Atmospheric Chemistry and Physics, 2022, 22, 3507-3524.          | 1.9 | 10        |
| 80 | Description and Evaluation of an Emissionâ€Driven and Fully Coupled Methane Cycle in UKESM1. Journal of Advances in Modeling Earth Systems, 2022, 14, .                                                 | 1.3 | 9         |
| 81 | Influence of the El Niño–Southern Oscillation on entry stratospheric water vapor in coupled<br>chemistry–ocean CCMI and CMIP6 models. Atmospheric Chemistry and Physics, 2021, 21, 3725-3740.           | 1.9 | 8         |
| 82 | Investigations on the anthropogenic reversal of the natural ozone gradient between northern and southern midlatitudes. Atmospheric Chemistry and Physics, 2021, 21, 9669-9679.                          | 1.9 | 8         |
| 83 | Constraining tropospheric mixing timescales using airborne observations and numerical models.<br>Atmospheric Chemistry and Physics, 2003, 3, 1023-1035.                                                 | 1.9 | 6         |
| 84 | The Common Representative Intermediates Mechanism Version 2 in the United Kingdom Chemistry and Aerosols Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002420.                 | 1.3 | 6         |
| 85 | Future air pollution related health burdens associated with RCP emission changes in the UK. Science of the Total Environment, 2021, 773, 145635.                                                        | 3.9 | 6         |
| 86 | Ultraviolet Radiation modelling using output from the Chemistry Climate Model Initiative. , 2019, 19, 10087-10110.                                                                                      |     | 5         |
| 87 | The Impacts of Aerosol Emissions on Historical Climate in UKESM1. Atmosphere, 2020, 11, 1095.                                                                                                           | 1.0 | 5         |
| 88 | Coupling interactive fire with atmospheric composition and climate in the UK Earth System Model.<br>Geoscientific Model Development, 2021, 14, 6515-6539.                                               | 1.3 | 5         |
| 89 | Air quality improvements are projected to weaken the Atlantic meridional overturning circulation through radiative forcing effects. Communications Earth & Environment, 2022, 3, .                      | 2.6 | 5         |
| 90 | Attribution of Stratospheric and Tropospheric Ozone Changes Between 1850 and 2014 in CMIP6<br>Models. Journal of Geophysical Research D: Atmospheres, 2022, 127, .                                      | 1.2 | 5         |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | The roles of volatile organic compound deposition and oxidation mechanisms in determining<br>secondary organic aerosol production: aÂglobal perspective using the UKCA chemistry–climate model<br>(vn8.4). Geoscientific Model Development, 2019, 12, 2539-2569. | 1.3 | 4         |
| 92 | The impact of climate mitigation measures on near term climate forcers. Environmental Research<br>Letters, 2019, 14, 104013.                                                                                                                                     | 2.2 | 3         |
| 93 | Observations of subtropical air in the european mid-latitude lower stratosphere. , 1999, 125, 2965.                                                                                                                                                              |     | 2         |
| 94 | Using Machine Learning to Make Computationally Inexpensive Projections of 21st Century<br>Stratospheric Column Ozone Changes in the Tropics. Frontiers in Earth Science, 2021, 8, .                                                                              | 0.8 | 1         |
| 95 | Climate Change Impacts on Air Pollution in Northern Europe. Springer Climate, 2018, , 49-67.                                                                                                                                                                     | 0.3 | 1         |