Zuojun Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8566354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene-supported Pd catalyst for highly selective hydrogenation of resorcinol to 1, 3-cyclohexanedione through giant π-conjugate interactions. Scientific Reports, 2015, 5, 15664.	3.3	91
2	A New Approach Towards Acid Catalysts with High Reactivity Based on Graphene Nanosheets. ChemCatChem, 2014, 6, 2354-2363.	3.7	69
3	Entrainer-intensified vacuum reactive distillation process for the separation of 5-hydroxylmethylfurfural from the dehydration of carbohydrates catalyzed by a metal salt–ionic liquid. Green Chemistry, 2012, 14, 1220.	9.0	66
4	Novel dehydration of carbohydrates to 5-hydroxymethylfurfural catalyzed by Ir and Au chlorides in ionic liquids. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 363-370.	5.3	62
5	Brönsted acidic ionic liquids as novel catalysts for the hydrolyzation of soybean isoflavone glycosides. Catalysis Communications, 2008, 9, 1307-1311.	3.3	61
6	An Efficient and Reusable Embedded Ru Catalyst for the Hydrogenolysis of Levulinic Acid to γâ€Valerolactone. ChemSusChem, 2017, 10, 1720-1732.	6.8	60
7	Nitrogen-doped mesoporous carbon supported Pt nanoparticles as a highly efficient catalyst for decarboxylation of saturated and unsaturated fatty acids to alkanes. Applied Catalysis B: Environmental, 2017, 218, 679-689.	20.2	57
8	Switchable synthesis of furfurylamine and tetrahydrofurfurylamine from furfuryl alcohol over RANEY® nickel. Catalysis Science and Technology, 2017, 7, 4129-4135.	4.1	51
9	A Comprehensive Study on the Reductive Amination of 5â€Hydroxymethylfurfural into 2,5â€Bisaminomethylfuran over Raney Ni Through DFT Calculations. ChemCatChem, 2019, 11, 2649-2656.	3.7	43
10	One-pot production of 2,5-dimethylfuran from fructose over Ru/C and a Lewis–BrÃ,nsted acid mixture in N,N-dimethylformamide. Catalysis Science and Technology, 2016, 6, 6217-6225.	4.1	42
11	Hydrogenation of nitrobenzene to p-aminophenol using Pt/C catalyst and carbon-based solid acid. Chemical Engineering Journal, 2013, 229, 105-110.	12.7	40
12	Oneâ€Step Reductive Amination of 5â€Hydroxymethylfurfural into 2,5â€Bis(aminomethyl)furan over Raney Ni. ChemSusChem, 2021, 14, 2308-2312.	6.8	27
13	Hydrophobic activated carbon supported Ni-based acid-resistant catalyst for selective hydrogenation of phthalic anhydride to phthalide. Chemical Engineering Journal, 2015, 275, 271-280.	12.7	26
14	Enhancement of insulating properties of polyethylene blends by delocalization type voltage stabilizers. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 2041-2049.	2.9	26
15	Reactivity of Brönsted acid ionic liquids as dual solvent and catalyst for Fischer esterifications. Korean Journal of Chemical Engineering, 2009, 26, 666-672.	2.7	24
16	A novel route towards high yield 5-hydroxymethylfurfural from fructose catalyzed by a mixture of Lewis and Brönsted acids. RSC Advances, 2014, 4, 42035-42038.	3.6	22
17	Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over a Cu–acetonitrile complex. New Journal of Chemistry, 2019, 43, 7600-7605.	2.8	22
18	Enhancement of Service Life and Electrical Insulation Properties of Polymeric Cables With the Optimum Content of Aromatic Voltage Stabilizer. Polymer Engineering and Science, 2020, 60, 717-731.	3.1	21

Zuojun Wei

#	Article	IF	CITATIONS
19	Low Loading of CoRe/TiO ₂ for Efficient Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone. ACS Sustainable Chemistry and Engineering, 2021, 9, 10882-10891.	6.7	20
20	Liquid phase selective hydrogenation of phthalic anhydride to phthalide over titania supported gold catalysts. Catalysis Communications, 2009, 10, 2023-2026.	3.3	18
21	Acidic/Basic Oxides-Supported Cobalt Catalysts for One-Pot Synthesis of Isophorone Diamine from Hydroamination of Isophorone Nitrile. Industrial & Engineering Chemistry Research, 2015, 54, 9124-9132.	3.7	17
22	Pt-Re/rGO bimetallic catalyst for highly selective hydrogenation of cinnamaldehyde to cinnamylalcohol. Chinese Journal of Chemical Engineering, 2019, 27, 369-378.	3.5	17
23	The Progress on Graphene-based Catalysis. Current Organic Chemistry, 2016, 20, 2055-2082.	1.6	16
24	Nitrogenâ€Doped Grapheneâ€Supported Iron Catalyst for Highly Chemoselective Hydrogenation of Nitroarenes. ChemCatChem, 2018, 10, 2009-2013.	3.7	12
25	Hydrogenation of mâ€dinitrobenzene to mâ€phenylenediamine over La ₂ O ₃ â€promoted Ni/SiO ₂ catalysts. Journal of Chemical Technology and Biotechnology, 2009, 84, 1381-1389.	3.2	11
26	Progress on the graphene-involved catalytic hydrogenation reactions. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 126-139.	5.3	11
27	Reductive Amination of 5â€Hydroxymethylfurfural to 2,5â€Bis(aminomethyl)furan over Aluminaâ€Supported Niâ€Based Catalytic Systems. ChemSusChem, 2022, 15, .	6.8	11
28	Graphene Enhanced Electrical Properties of Polyethylene Blends for High-Voltage Insulation. Electronic Materials Letters, 2019, 15, 582-594.	2.2	10
29	Reaction process and kinetics of the selective hydrogenation of resorcinol into 1,3-cyclohexanedione. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1428-1434.	5.3	9
30	Ligand-controlled fabrication of core-shell PdNi bimetallic nanoparticles as a highly efficient hydrogenation catalyst. Catalysis Communications, 2017, 98, 61-65.	3.3	8
31	Delocalized aromatic molecules with matched electronâ€donating and electronâ€withdrawing groups enhancing insulating performance of polyethylene blends. Journal of Applied Polymer Science, 2020, 137, 49185.	2.6	7
32	Highly efficient selective hydrogenation of levulinic acid to γ-valerolactone over Cu–Re/TiO ₂ bimetallic catalysts. RSC Advances, 2021, 12, 602-610.	3.6	7
33	Mechanistic insights into the selective hydrogenation of resorcinol to 1,3-cyclohexanedione over Pd/rGO catalyst through DFT calculation. Chinese Journal of Chemical Engineering, 2018, 26, 2542-2548.	3.5	6
34	Selectivity of Gold Catalysts for Selective Hydrogenation of Cinnamaldehyde. Asian Journal of Chemistry, 2013, 25, 8617-8620.	0.3	5
35	Effects of the preparation methods on the properties of Ni-La2O3-SiO2 catalysts for m-dinitrobenzene hydrogenation. Reaction Kinetics and Catalysis Letters, 2007, 92, 121-127.	0.6	4
36	One-pot synthesis of pyrrolidone derivatives via reductive amination of levulinic acid/ester with nitriles over Pd/C catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 777-792.	1.7	4

ZUOJUN WEI

#	Article	IF	CITATIONS
37	Highly Effective Activated Carbonâ€Supported Niâ€Mn Bifunctional Catalyst for Selective Hydrodeoxygenation of 5â€Hydroxymethylfurfural to 2,5â€Dimethylfuran. ChemSusChem, 2022, 15, .	6.8	4
38	Study on the alcoholysis of isoflavone catalyzed by ionic liquids. Reaction Kinetics and Catalysis Letters, 2008, 95, 257-264.	0.6	3
39	Aerobic oxidation of 5-[(formyloxy)methyl]furfural to 2,5-furandicarboxylic acid over MoCuOx catalyst. Molecular Catalysis, 2022, 517, 111986.	2.0	3
40	Insight into the Dehydration of High-concentration Fructose to 5-Hydroxymethylfurfural in Oxygen-containing Polar Aprotic Solvents. New Journal of Chemistry, 0, , .	2.8	3
41	Novel Pd-BTP/SiO2as an Effective Heterogeneous Catalyst for Heck Reactions. Chemical Engineering Communications, 2016, 203, 488-495.	2.6	2
42	Polyethylene blends with/without graphene for potential recyclable HVDC cable insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 851-858.	2.9	2
43	Design of low-loaded NiRe bimetallic catalyst on N-doped mesoporous carbon for highly selective deoxygenation of oleic acid to n-heptadecane. Korean Journal of Chemical Engineering, 0, , 1.	2.7	2
44	Sustainable Efficient Synthesis of Pyrrolidones from Levulinic Acid over Pd/C Catalyst. ChemistrySelect, 2022, 7, .	1.5	2
45	Supported Co/activated carbon catalysts for the one-pot synthesis of isophorone diamine from hydroamination of isophorone nitrile. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 931-943.	1.7	1
46	Effects of preparation methods of support on the properties of nickel catalyst for hydrogenation of m-dinitrobenzene. Frontiers of Chemical Engineering in China, 2007, 1, 287-291.	0.6	0
47	Electrical treeing of polyethylene blends with/without voltage stabilizer. , 2018, , .		0
48	Effect of New Voltage Stabilizers on Electrical Tree Initiation in Polyethylene Blends. , 2019, , .		0