Stefan Seeger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8566270/publications.pdf

Version: 2024-02-01

81434 37326 10,361 161 41 100 citations h-index g-index papers 168 168 168 14343 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fluorescent Staining of Silicone Micro- and Nanopatterns for Their Optical Imaging. Langmuir, 2022, 38, 231-243.	1.6	1
2	Printable and Versatile Superhydrophobic Paper via Scalable Nonsolvent Armor Strategy. ACS Nano, 2022, 16, 9442-9451.	7.3	6
3	Tunable bulk material with robust and renewable superhydrophobicity designed via in-situ loading of surface-wrinkled microparticles. Chemical Engineering Journal, 2021, 408, 127301.	6.6	13
4	Holistic evaluation of the suitability of metal alloys for sustainable marine construction from a technical, economic and availability perspective. Ocean Engineering, 2021, 219, 108378.	1.9	19
5	Immobilization of Candida antarctica Lipase B on Silicone Nanofilaments. Journal of Nanomaterials, 2021, 2021, 1-8.	1.5	1
6	Silicone nanofilaments grown on aircraft alloys for low ice adhesion. Surface and Coatings Technology, 2021, 410, 126971.	2.2	13
7	Assessing the long-term potential of fiber reinforced polymer composites for sustainable marine construction. Journal of Ocean Engineering and Marine Energy, 2021, 7, 129-144.	0.9	7
8	Silicone Nanofilament Support Layers in an Open-Channel System for the Fast Reduction of Para-Nitrophenol. Nanomaterials, 2021, 11, 1663.	1.9	1
9	Coral-like silicone nanofilament coatings with extremely low ice adhesion. Scientific Reports, 2021, 11, 20427.	1.6	4
10	From resources to researchâ€"a framework for identification and prioritization of materials research for sustainable construction. Materials Today Sustainability, 2020, 7-8, 100009.	1.9	9
11	All-organic fluorine-free superhydrophobic bulk material with mechanochemical robustness and photocatalytic functionality. Chemical Engineering Journal, 2020, 385, 123969.	6.6	30
12	Droplet assisted growth and shaping of alumina and mixed alumina-silicone 1-dimensional nanostructures. Journal of Colloid and Interface Science, 2020, 560, 77-84.	5.0	2
13	Structure Analysis of Amyloid Aggregates at Lipid Bilayers by Supercritical Angle Raman Microscopy. Analytical Chemistry, 2020, 92, 4963-4970.	3.2	2
14	Solvent-Free Fabrication of Flexible and Robust Superhydrophobic Composite Films with Hierarchical Micro/Nanostructures and Durable Self-Cleaning Functionality. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44691-44699.	4.0	27
15	Amyloid-β Peptide–Lipid Bilayer Interaction Investigated by Supercritical Angle Fluorescence. ACS Chemical Neuroscience, 2019, 10, 4776-4786.	1.7	7
16	A SuperLEphilic/Superhydrophobic and Thermostable Separator Based on Silicone Nanofilaments for Li Metal Batteries. IScience, 2019, 16, 420-432.	1.9	35
17	Hierarchical Structured Multifunctional Selfâ€Cleaning Material with Durable Superhydrophobicity and Photocatalytic Functionalities. Small, 2019, 15, e1901822.	5 . 2	83
18	Morphology Tuneable and Multifunctional Polystyrene‧ilicone Nano omposite Materials. ChemNanoMat, 2019, 5, 964-971.	1.5	1

#	Article	IF	CITATIONS
19	Addressing global environmental megatrends by decoupling the causal chain through floating infrastructure. Futures, 2019, 113, 102420.	1.4	3
20	Roomâ€Temperature Synthesis of Germanium Oxide Nanofilaments and Their Potential Use as Luminescent Selfâ€Cleaning Surfaces. ChemPhysChem, 2019, 20, 510-510.	1.0	1
21	Chemically Resistant, Electric Conductive, and Superhydrophobic Coatings. Advanced Materials Interfaces, 2019, 6, 1900041.	1.9	13
22	Eco-Efficient Process Improvement at the Early Development Stage: Identifying Environmental and Economic Process Hotspots for Synergetic Improvement Potential. Environmental Science & Economology, 2018, 52, 5959-5967.	4.6	11
23	Predicting the environmental impact of a future nanocellulose production at industrial scale: Application of the life cycle assessment scale-up framework. Journal of Cleaner Production, 2018, 174, 283-295.	4.6	132
24	Systematic parametric investigation on the CVD process of polysiloxane nano- and microstructures. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	8
25	Room Temperature Synthesis of Germanium Oxide Nanofilaments and Their Potential Use as Luminescent Selfâ€Cleaning Surfaces. ChemPhysChem, 2018, 20, 538-544.	1.0	5
26	Reduced bacterial colonisation on surfaces coated with silicone nanostructures. Applied Surface Science, 2018, 459, 505-511.	3.1	12
27	Environmental assessment of alternative methanesulfonic acid production using direct activation of methane. Journal of Cleaner Production, 2018, 202, 1179-1191.	4.6	7
28	Directed In Situ Shaping of Complex Nano―and Microstructures during Chemical Synthesis. Macromolecular Rapid Communications, 2017, 38, 1600558.	2.0	26
29	Silicone Nanofilament-Supported Mixed Nickel-Metal Oxides for Alkaline Water Electrolysis. Journal of the Electrochemical Society, 2017, 164, F203-F208.	1.3	7
30	Supercritical angle fluorescence as a tool to study the interaction between lipid bilayer and peptides. Proceedings of SPIE, 2017 , , .	0.8	0
31	Hydroxyapatite Biomineralization on Functionalized Silicone Nanofilaments. Colloids and Interface Science Communications, 2017, 16, 1-5.	2.0	8
32	A Facile, Sustainable Strategy towards the Preparation of Silicone Nanofilaments and Their Use as Antiwetting Coatings. ChemistrySelect, 2017, 2, 5463-5468.	0.7	7
33	Functional Silverâ€Siliconeâ€Nanofilamentâ€Composite Material for Water Disinfection. Small, 2017, 13, 1601072.	5.2	13
34	Supercritical angle Raman microscopy: a surface-sensitive nanoscale technique without field enhancement. Light: Science and Applications, 2017, 6, e17066-e17066.	7.7	6
35	From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. Journal of Cleaner Production, 2016, 135, 1085-1097.	4.6	325
36	Simultaneous Surface-Near and Solution Fluorescence Correlation Spectroscopy. Journal of Fluorescence, 2016, 26, 753-756.	1.3	6

3

#	Article	IF	CITATIONS
37	Multi-perspective application selection: a method to identify sustainable applications for new materials using the example of cellulose nanofiber reinforced composites. Journal of Cleaner Production, 2016, 112, 1199-1210.	4.6	24
38	Öl/Wasserâ€Trennung mit selektiven superabweisenden/superbenetzbaren OberflÃ z henmaterialien. Angewandte Chemie, 2015, 127, 2358-2368.	1.6	32
39	Multifunctional Hybrid Porous Microâ€/Nanocomposite Materials. Advanced Materials, 2015, 27, 7775-7781.	11.1	55
40	Silicone Nanofilament Supported Nickel Oxide: A New Concept for Oxygen Evolution Catalysts in Water Electrolyzers. Advanced Materials Interfaces, 2015, 2, 1500216.	1.9	10
41	\hat{l} ±-Synuclein Insertion into Supported Lipid Bilayers As Seen by in Situ X-ray Reflectivity. ACS Chemical Neuroscience, 2015, 6, 374-379.	1.7	7
42	Robust superhydrophobic wood obtained by spraying silicone nanoparticles. RSC Advances, 2015, 5, 21999-22004.	1.7	40
43	Life Cycle Assessment of a New Technology To Extract, Functionalize and Orient Cellulose Nanofibers from Food Waste. ACS Sustainable Chemistry and Engineering, 2015, 3, 1047-1055.	3.2	69
44	Solid supported lipid bilayers from artificial and natural lipid mixtures – long-term stable, homogeneous and reproducible. Journal of Materials Chemistry B, 2015, 3, 6046-6056.	2.9	11
45	Oil/Water Separation with Selective Superantiwetting/Superwetting Surface Materials. Angewandte Chemie - International Edition, 2015, 54, 2328-2338.	7.2	1,078
46	Nanocatalysis: Academic Discipline and Industrial Realities. Journal of Nanotechnology, 2014, 2014, 1-19.	1.5	52
47	Evaporation-Induced Transition from <i>Nepenthes</i> Pitcher-Inspired Slippery Surfaces to Lotus Leaf-Inspired Superoleophobic Surfaces. Langmuir, 2014, 30, 14292-14299.	1.6	82
48	Future pharmaceutical research: the need to look beyond science. Future Medicinal Chemistry, 2014, 6, 721-723.	1.1	1
49	One-dimensional silicone nanofilaments. Advances in Colloid and Interface Science, 2014, 209, 144-162.	7.0	40
50	Superamphiphobic surfaces. Chemical Society Reviews, 2014, 43, 2784-2798.	18.7	525
51	Protein Biomineralized Nanoporous Inorganic Mesocrystals with Tunable Hierarchical Nanostructures. Journal of the American Chemical Society, 2014, 136, 15781-15786.	6.6	55
52	Three-Dimensional Organization of Surface-Bound Silicone Nanofilaments Revealed by Focused Ion Beam Nanotomography. Journal of Physical Chemistry C, 2014, 118, 24967-24975.	1.5	18
53	<i>Nepenthes</i> Pitcher Inspired Antiâ€Wetting Silicone Nanofilaments Coatings: Preparation, Unique Antiâ€Wetting and Selfâ€Cleaning Behaviors. Advanced Functional Materials, 2014, 24, 1074-1080.	7.8	156
54	Universal self-assembly of organosilanes with long alkyl groups into silicone nanofilaments. Polymer Chemistry, 2014, 5, 1132-1139.	1.9	24

#	Article	IF	CITATIONS
55	Tax revenue accruing from the commercialization of research findings as an indicator for economic benefits of government financed research. Research Evaluation, 2014, 23, 233-248.	1.3	1
56	Superficial Dopants Allow Growth of Silicone Nanofilaments on Hydroxyl-Free Substrates. Langmuir, 2014, 30, 10308-10316.	1.6	7
57	Solvent-controlled growth of silicone nanofilaments. RSC Advances, 2014, 4, 33424-33430.	1.7	7
58	Superwetting Double-Layer Polyester Materials for Effective Removal of Both Insoluble Oils and Soluble Dyes in Water. ACS Applied Materials & Soluble Dyes in Water. A	4.0	109
59	Virtual pharmaceutical companies: collaborating flexibly in pharmaceutical development. Drug Discovery Today, 2014, 19, 348-355.	3.2	11
60	On-Surface Aggregation of \hat{l}_{\pm} -Synuclein at Nanomolar Concentrations Results in Two Distinct Growth Mechanisms. ACS Chemical Neuroscience, 2013, 4, 408-417.	1.7	61
61	Polysiloxane Nanotubes. Chemistry of Materials, 2013, 25, 2787-2792.	3.2	41
62	Direct observation of selective protein capturing on molecular imprinting substrates. Biosensors and Bioelectronics, 2013, 40, 96-101.	5.3	27
63	Silica/Silicone Nanofilament Hybrid Coatings with Almost Perfect Superhydrophobicity. ChemPhysChem, 2013, 14, 1646-1651.	1.0	25
64	Fast and Sensitive Interferon- \hat{l}^3 Assay Using Supercritical Angle Fluorescence. Biosensors, 2013, 3, 108-115.	2.3	3
65	Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	1,018
66	A superoleophobic textile repellent towards impacting drops of alkanes. Applied Surface Science, 2012, 258, 3835-3840.	3.1	69
67	Tackling Sampleâ€Related Artifacts in Membrane FCS Using Parallel SAF and UAF Detection. ChemPhysChem, 2012, 13, 3655-3660.	1.0	5
68	Scale-Up of a Reaction Chamber for Superhydrophobic Coatings Based on Silicone Nanofilaments. Industrial & Chemistry Research, 2012, 51, 2631-2636.	1.8	33
69	Photocatalytic Composites of Silicone Nanofilaments and TiO ₂ Nanoparticles. Advanced Functional Materials, 2012, 22, 4433-4438.	7.8	36
70	Supercritical Angle Fluorescence Immunoassay Platform. Analytical Chemistry, 2011, 83, 2345-2350.	3.2	17
71	Multidonor Deep-UV FRET Study of Protein–Ligand Binding and Its Potential to Obtain Structure Information. Journal of Physical Chemistry B, 2011, 115, 13643-13649.	1.2	10
72	Mechanism of Membrane Interaction and Disruption by \hat{l}_{\pm} -Synuclein. Journal of the American Chemical Society, 2011, 133, 19366-19375.	6.6	198

#	Article	IF	CITATIONS
73	Simultaneous near-field and far-field fluorescence microscopy of single molecules. Optics Express, 2011, 19, 6836.	1.7	16
74	Polyester Materials with Superwetting Silicone Nanofilaments for Oil/Water Separation and Selective Oil Absorption. Advanced Functional Materials, 2011, 21, 4699-4704.	7.8	746
75	Superhyrophobic Materials: Polyester Materials with Superwetting Silicone Nanofilaments for Oil/Water Separation and Selective Oil Absorption (Adv. Funct. Mater. 24/2011). Advanced Functional Materials, 2011, 21, 4632-4632.	7.8	4
76	Superoleophobic Coatings with Ultralow Sliding Angles Based on Silicone Nanofilaments. Angewandte Chemie - International Edition, 2011, 50, 6652-6656.	7.2	377
77	Understanding protein adsorption phenomena at solid surfaces. Advances in Colloid and Interface Science, 2011, 162, 87-106.	7.0	1,289
78	Nanotechnology in the market: promises and realities. International Journal of Nanotechnology, 2011, 8, 592.	0.1	39
79	Micropatterning of superhydrophobic silicone nanofilaments by a near-ultraviolet Nd:YAG laser. Nano Research, 2010, 3, 889-894.	5.8	31
80	Monitoring peptide-surface interaction by means of molecular dynamics simulation. Chemical Physics, 2010, 378, 73-81.	0.9	11
81	Autofluorescence Detection in Analytical Chemistry and Biochemistry. Applied Spectroscopy Reviews, 2010, 45, 12-43.	3.4	27
82	Understanding Cooperative Protein Adsorption Events at the Microscopic Scale: A Comparison between Experimental Data and Monte Carlo Simulations. Journal of Physical Chemistry B, 2010, 114, 5862-5869.	1.2	25
83	Nanometer Axial Resolution by Three-Dimensional Supercritical Angle Fluorescence Microscopy. Physical Review Letters, 2010, 105, 108103.	2.9	53
84	Rapid analysis of serotonin and propranolol using miniaturized CE with deepâ€UV fluorescence detector. Electrophoresis, 2009, 30, 2565-2571.	1.3	18
85	Rapid analysis and sensitive detection of dl-tryptophan by using shorter capillary column coupled with deep-UV fluorescence detector. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 3753-3756.	1.2	13
86	Deep UV sensing of the interaction of porphyrin with bovine serum albumin protein. Sensors and Actuators B: Chemical, 2009, 139, 118-124.	4.0	15
87	Surface-induced spreading phenomenon of protein clusters. Soft Matter, 2009, 5, 1039.	1.2	41
88	Direct Determination of Native Proteins in Miniaturized Capillary Electrophoresis System. Journal of Nanoscience and Nanotechnology, 2009, 9, 2645-2650.	0.9	8
89	Investigating Alanine–Silica Interaction by Means of Firstâ€Principles Molecularâ€Dynamics Simulations. ChemPhysChem, 2008, 9, 414-421.	1.0	35
90	A Simple, Oneâ€Step Approach to Durable and Robust Superhydrophobic Textiles. Advanced Functional Materials, 2008, 18, 3662-3669.	7.8	558

#	Article	IF	CITATIONS
91	Patterned superfunctional surfaces based on a silicone nanofilament coating. Soft Matter, 2008, 4, 450.	1.2	131
92	Superhydrophobic Silicone Nanofilament Coatings. Journal of Adhesion Science and Technology, 2008, 22, 251-263.	1.4	43
93	Functionalized Silicone Nanofilaments:  A Novel Material for Selective Protein Enrichment. Langmuir, 2008, 24, 1053-1057.	1.6	46
94	Surface Organization and Cooperativity during Nonspecific Protein Adsorption Events. Journal of Physical Chemistry B, 2008, 112, 13971-13980.	1.2	48
95	A Smart Recipe of Chemistry and Management. Chimia, 2008, 62, 122-125.	0.3	0
96	Ultrasensitive Staining-Free Protein Detection After PAA Gel Electrophoresis Using Deep UV Fluorescence. Protein and Peptide Letters, 2007, 14, 712-715.	0.4	6
97	Parallel two-channel near- and far-field fluorescence microscopy. Journal of Biomedical Optics, 2007, 12, 034012.	1.4	14
98	A Comprehensive Study of Concepts and Phenomena of the Nonspecific Adsorption of \hat{l}^2 -Lactoglobulin. ChemPhysChem, 2007, 8, 862-872.	1.0	51
99	Long term studies on the chemical stability of a superhydrophobic silicone nanofilament coating. Applied Surface Science, 2007, 253, 5972-5979.	3.1	90
100	Long term environmental durability of a superhydrophobic silicone nanofilament coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 234-240.	2.3	84
101	Label-free detection of protein interactions using deep UV fluorescence lifetime microscopy. Analytical Biochemistry, 2007, 367, 104-110.	1.1	15
102	Metabolic Characterization of Tumor Cell-specific Protoporphyrin IX Accumulation After Exposure to 5-Aminolevulinic Acid in Human Colonic Cells¶. Photochemistry and Photobiology, 2007, 76, 518-525.	1.3	4
103	Von der Innovationsflut zum wirtschaftlichen Erfolg. , 2007, , 111-129.		5
104	Label-Free Detection of Single Protein Molecules Using Deep UV Fluorescence Lifetime Microscopy. Analytical Chemistry, 2006, 78, 2732-2737.	3.2	27
105	Label-Free Detection of Single Native Proteins: Ultimate Sensitivity and Convenience. Chimia, 2006, 60, 854-854.	0.3	1
106	Towards single-molecule DNA sequencing: Assays with low nonspecific adsorption. Analytical Biochemistry, 2006, 349, 181-185.	1.1	13
107	Supercritical angle fluorescence biosensor for the detection of molecular interactions on cellulose-modified glass surfaces. Applied Surface Science, 2006, 252, 7788-7793.	3.1	4
108	Biotin-Functionalized Cellulose-Based Monolayers as Sensitive Interfaces for the Detection of Single Molecules. ChemBioChem, 2006, 7, 900-903.	1.3	14

#	Article	IF	Citations
109	Conformational Reorientation of Immunoglobulin G During Nonspecific Interaction with Surfaces. ChemPhysChem, 2006, 7, 837-846.	1.0	36
110	Silicone Nanofilaments and Their Application as Superhydrophobic Coatings. Advanced Materials, 2006, 18, 2758-2762.	11.1	334
111	Lateral structural variations in thin cellulose layers investigated by microbeam grazing incidence small-angle X-ray scattering. Physica B: Condensed Matter, 2005, 357, 190-192.	1.3	15
112	Confocal reader for biochip screening and fluorescence microscopy. Biosensors and Bioelectronics, 2005, 20, 1872-1877.	5.3	15
113	Real-Time Detection of Polymerase Activity Using Supercritical Angle Fluorescence. Journal of Fluorescence, 2004, 14, 75-78.	1.3	4
114	FRET Studies of the Interaction of Dimeric Cyanine Dyes with DNA. Journal of Fluorescence, 2004, 14, 187-191.	1.3	31
115	Fast Detection of Single Nucleotide Polymorphisms (SNPs) by Primer Elongation with Monitoring of Supercritical-Angle Fluorescence. ChemBioChem, 2004, 5, 1680-1685.	1.3	15
116	Deep-UV Laser-Based Fluorescence Lifetime Imaging Microscopy of Single Molecules. Journal of Physical Chemistry B, 2004, 108, 8324-8329.	1.2	41
117	Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy. Optics Letters, 2004, 29, 569.	1.7	63
118	Real-time Detection of Nucleotide Incorporation During Complementary DNA Strand Synthesis. ChemBioChem, 2003, 4, 589-592.	1.3	13
119	Surface tension properties of surface-coatings for application in biodiagnostics determined by contact angle measurements. Colloids and Surfaces B: Biointerfaces, 2003, 30, 177-186.	2.5	79
120	Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument. Biosensors and Bioelectronics, 2003, 18, 1193-1199.	5.3	58
121	Confocal total-internal-reflection fluorescence microscopy with a high-aperture parabolic mirror lens. Applied Optics, 2003, 42, 3277.	2.1	30
122	Sizing of single fluorescently stained DNA fragments by scanning microscopy. Nucleic Acids Research, 2003, 31, 138e-138.	6.5	14
123	Confocal TIRF microscopy of single molecules. , 2003, , .		1
124	Metabolic Characterization of Tumor Cell–specific Protoporphyrin IX Accumulation After Exposure to 5-Aminolevulinic Acid in Human Colonic Cells¶. Photochemistry and Photobiology, 2002, 76, 518.	1.3	114
125	<title>Quantitative fluorescence spectroscopy of single molecules on surfaces</title> ., 2000, 3922, 123.		0
126	Single Molecule Detection at Interfaces for Applications in High Throughput Screening. Journal of the Association for Laboratory Automation, 2000, 5, 69-73.	2.8	0

#	Article	IF	CITATIONS
127	Forbidden Light Detection from Single Molecules. Analytical Chemistry, 2000, 72, 2117-2123.	3.2	76
128	Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers. FEBS Letters, 1999, 443, 337-340.	1.3	22
129	Highly efficient optical detection of surface-generated fluorescence. Applied Optics, 1999, 38, 724.	2.1	155
130	Highly efficient optical detection of surface-generated fluorescence., 1999,,.		0
131	<title>Optical tweezers as tools for studying molecular interactions at surfaces</title> ., 1999, 3604, 90.		1
132	<title>Comparison between a conventional epifluorescence microscope and a new highly efficient evanescent wave detector in single-molecule spectroscopic applications</title> ., 1999,,.		0
133	Ultrathin Cellulose-Based Layers for Detection of Single Antigen Molecules. Advanced Materials, 1998, 10, 1005-1009.	11.1	41
134	Counting of Single Protein Molecules at Interfaces and Application of This Technique in Early-Stage Diagnosis. Analytical Chemistry, 1998, 70, 3202-3205.	3.2	34
135	Immobilization of Biomolecules on Langmuirâ-'Blodgett Films of Regenerative Cellulose Derivatives. Langmuir, 1998, 14, 2786-2789.	1.6	39
136	<title>Optical tweezers as a tool for the functional analysis of neuronal cell membrane receptors</title> ., 1998, 3199, 156.		0
137	<title>Detection of single protein molecules at interfaces after antibody-antigen binding</title> ., 1998, 3199, 168.		1
138	Ultrathin Cellulose-Based Layers for Detection of Single Antigen Molecules. Advanced Materials, 1998, 10, 1005-1009.	11.1	1
139	<title>Cellulose protein films for highly specific evanescent wave immunosensors</title> ., 1996,,.		1
140	<title>Cellulose antibody films for highly specific evanescent wave immunosensors</title> ., 1996,,.		1
141	<title>Ultrathin oligonucleotide layers for fluorescence-based DNA sensors</title> ., 1996, 2928, 220.		3
142	$$ $$ $$ $$ $$ $$ $$ $$ $$		0
143	<title>Using luminescent ruthenuim(II) complexes as dyes in the multiplex concept</title> ., 1996,,.		O
144	$\mbox{\tt Immobilized}</math> fluorescent dyes for sensitive pH measurements on enamel surfaces with fiber optics <math display="inline">\mbox{\tt }$, 1996, , .		0

#	Article	IF	CITATIONS
145	<title>Cell patterns for biosensors manufactured with laser tweezers</title> ., 1996,,.		1
146	<title>In vitro phototoxicity of a new phthalocyanine-immunoconjugate for use in photodynamic therapy</title> ., 1996, 2924, 153.		2
147	Fluorescence pattern recognition for ultrasensitive molecule identification: comparison of experimental data and theoretical approximations. Chemical Physics Letters, 1996, 250, 355-360.	1.2	51
148	Adsorption of alkyl-trichlorosilanes on glass and silicon: a comparative study using sum-frequency spectroscopy and XPS. Thin Solid Films, 1996, 289, 272-281.	0.8	22
149	<title>Approaches from a single- to a multiparameter evanescent wave sensor</title> ., 1996, 2629, 96.		0
150	<title>Ultrathin antibody networks for detection of antigens</title> ., 1995, 2331, 50.		0
151	One-step immobilization of immunoglobulin G and potential of the method for application in immunosensors. Sensors and Actuators B: Chemical, 1995, 28, 143-149.	4.0	9
152	Use of diode lasers in an evanescent wave immunosensor for stationary and time-resolved detection of antigens. Sensors and Actuators B: Chemical, 1995, 29, 293-299.	4.0	9
153	An All-Solid-State Flow Cytometer for Counting Fluorescent Microspheres. Analytical Chemistry, 1995, 67, 2666-2671.	3.2	32
154	<title>Design of multiplex dyes for the detection of different biomolecules</title> ., 1994, , .		9
155	Optical determination of pH on surfaces using immobilized Fluorescent dyes. Journal of Fluorescence, 1994, 4, 45-48.	1.3	4
156	Direct immobilization of antibodies on phthalocyaninato-polysiloxane photopolymers. Thin Solid Films, 1994, 245, 206-210.	0.8	13
157	Sensitive fluorescence detection in capillary electrophoresis using laser diodes and multiplex dyes. Journal of Luminescence, 1994, 62, 101-108.	1.5	27
158	Laser Applications in Chemistry and Biology: Stimulation, Observation, and Manipulation. Israel Journal of Chemistry, 1994, 34, 5-18.	1.0	24
159	<title>Biodiagnostics with multiplex dyes</title> ., 1994, 2136, 75.		3
160	Design of Multiplex Dyes. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1993, 97, 1734-1737.	0.9	14
161	Ultrasensitive fluorescence detection at surfaces: Instrument development, surface chemistry, and applications in life science and medicine. Comprehensive Series in Photochemical and Photobiological Sciences, 0, , 609-640.	0.3	0