
Serena Lattante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8565438/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	3.8	517
2	Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Annals of Neurology, 2013, 74, 180-187.	2.8	284
3	<i>TARDBP</i> and <i>FUS</i> Mutations Associated with Amyotrophic Lateral Sclerosis: Summary and Update. Human Mutation, 2013, 34, 812-826.	1.1	216
4	Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype. Nature Genetics, 2012, 44, 636-638.	9.4	148
5	P525L FUS mutation is consistently associated with a severe form of juvenile Amyotrophic Lateral Sclerosis. Neuromuscular Disorders, 2012, 22, 73-75.	0.3	124
6	Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Annals of Neurology, 2019, 85, 470-481.	2.8	118
7	Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). Trends in Genetics, 2015, 31, 263-273.	2.9	106
8	Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease. Neurology, 2012, 79, 66-72.	1.5	99
9	Mutations in the 3′ untranslated region of FUS causing FUS overexpression are associated with amyotrophic lateral sclerosis. Human Molecular Genetics, 2013, 22, 4748-4755.	1.4	94
10	ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiology of Aging, 2017, 51, 178.e1-178.e9.	1.5	86
11	Homozygous TREM2 mutation in a family with atypical frontotemporal dementia. Neurobiology of Aging, 2014, 35, 2419.e23-2419.e25.	1.5	84
12	Contribution of <i>ATXN2</i> intermediary polyQ expansions in a spectrum of neurodegenerative disorders. Neurology, 2014, 83, 990-995.	1.5	70
13	Sqstm1 knock-down causes a locomotor phenotype ameliorated by rapamycin in a zebrafish model of ALS/FTLD. Human Molecular Genetics, 2015, 24, 1682-1690.	1.4	69
14	TRAPPC9-related autosomal recessive intellectual disability: report of a new mutation and clinical phenotype. European Journal of Human Genetics, 2013, 21, 229-232.	1.4	65
15	Defining the spectrum of frontotemporal dementias associated with <i>TARDBP</i> mutations. Neurology: Genetics, 2016, 2, e80.	0.9	56
16	The Pittâ€Hopkins syndrome: Report of 16 new patients and clinical diagnostic criteria. American Journal of Medical Genetics, Part A, 2011, 155, 1536-1545.	0.7	55
17	<i>ATXN2</i> polyQ intermediate repeats are a modifier of ALS survival. Neurology, 2015, 84, 251-258.	1.5	52
18	hnRNPA2B1 and hnRNPA1 mutations are rare in patients with "multisystem proteinopathy―and frontotemporal lobar degeneration phenotypes. Neurobiology of Aging, 2014, 35, 934.e5-934.e6.	1.5	47

SERENA LATTANTE

#	Article	lF	CITATIONS
19	Intragenic <i>KANSL1</i> mutations and chromosome 17q21.31 deletions: broadening the clinical spectrum and genotype–phenotype correlations in a large cohort of patients. Journal of Medical Genetics, 2015, 52, 804-814.	1.5	47
20	Rare missense variants of neuronal nicotinic acetylcholine receptor altering receptor function are associated with sporadic amyotrophic lateral sclerosis. Human Molecular Genetics, 2009, 18, 3997-4006.	1.4	42
21	Primary fibroblasts cultures reveal TDP-43 abnormalities in amyotrophic lateral sclerosis patients with and without SOD1 mutations. Neurobiology of Aging, 2015, 36, 2005.e5-2005.e13.	1.5	42
22	<scp>LETM</scp> 1 couples mitochondrial <scp>DNA</scp> metabolism and nutrient preference. EMBO Molecular Medicine, 2018, 10, .	3.3	41
23	TBK1 is associated with ALS and ALS-FTD in Sardinian patients. Neurobiology of Aging, 2016, 43, 180.e1-180.e5.	1.5	40
24	Relations between C9orf72 expansion size in blood, age at onset, age at collection and transmission across generations in patients and presymptomatic carriers. Neurobiology of Aging, 2019, 74, 234.e1-234.e8.	1.5	38
25	TREM2 mutations are rare in a French cohort of patients with frontotemporal dementia. Neurobiology of Aging, 2013, 34, 2443.e1-2443.e2.	1.5	35
26	Matrin 3 variants are frequent in Italian ALS patients. Neurobiology of Aging, 2017, 49, 218.e1-218.e7.	1.5	35
27	ATXN1 intermediate-length polyglutamine expansions are associated with amyotrophic lateral sclerosis. Neurobiology of Aging, 2018, 64, 157.e1-157.e5.	1.5	34
28	Defining the association of TMEM106B variants among frontotemporal lobar degeneration patients with GRN mutations and C9orf72 repeat expansions. Neurobiology of Aging, 2014, 35, 2658.e1-2658.e5.	1.5	33
29	SOD1 G93D sporadic amyotrophic lateral sclerosis (SALS) patient with rapid progression and concomitant novel ANG variant. Neurobiology of Aging, 2011, 32, 1924.e15-1924.e18.	1.5	32
30	Uncovering amyotrophic lateral sclerosis phenotypes: Clinical features and long-term follow-up of upper motor neuron-dominant ALS. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 278-282.	2.3	32
31	New ALSâ€Related Genes Expand the <i>Spectrum Paradigm</i> of Amyotrophic Lateral Sclerosis. Brain Pathology, 2016, 26, 266-275.	2.1	26
32	The S100A4 Transcriptional Inhibitor Niclosamide Reduces Pro-Inflammatory and Migratory Phenotypes of Microglia: Implications for Amyotrophic Lateral Sclerosis. Cells, 2019, 8, 1261.	1.8	24
33	Classification of familial amyotrophic lateral sclerosis by family history: effects on frequency of genes mutation. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 1201-1203.	0.9	22
34	Mutations in the PFN1 gene are not a common cause in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration in France. Neurobiology of Aging, 2013, 34, 1709.e1-1709.e2.	1.5	21
35	Coexistence of variants in TBK1 and in other ALS-related genes elucidates an oligogenic model of pathogenesis in sporadic ALS. Neurobiology of Aging, 2019, 84, 239.e9-239.e14.	1.5	21
36	Syndromic Craniosynostosis Can Define New Candidate Genes for Suture Development or Result from the Non-specifc Effects of Pleiotropic Genes: Rasopathies and Chromatinopathies as Examples. Frontiers in Neuroscience, 2017, 11, 587.	1.4	19

SERENA LATTANTE

#	Article	IF	CITATIONS
37	Impairment of different protein domains causes variable clinical presentation within Pitt-Hopkins syndrome and suggests intragenic molecular syndromology of TCF4. European Journal of Medical Genetics, 2017, 60, 565-571.	0.7	18
38	ALS skin fibroblasts reveal oxidative stress and ERK1/2-mediated cytoplasmic localization of TDP-43. Cellular Signalling, 2020, 70, 109591.	1.7	18
39	High-Throughput Genetic Testing in ALS: The Challenging Path of Variant Classification Considering the ACMG Guidelines. Genes, 2020, 11, 1123.	1.0	15
40	Frontotemporal dementia, Parkinsonism and lower motor neuron involvement in a patient with C9ORF72 expansion. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 66-69.	1.1	13
41	D11Y SOD1 mutation and benign ALS: A consistent genotype-phenotype correlation. Journal of the Neurological Sciences, 2011, 309, 31-33.	0.3	12
42	A novel compound heterozygous <i>ALS2</i> mutation in two Italian siblings with juvenile amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 470-472.	1.1	12
43	A novel L67P SOD1 mutation in an Italian ALS patient. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 150-152.	2.3	11
44	A novel truncating variant within exon 7 of <i>KAT6B</i> associated with features of both Say–Barber–Bieseker–Young–Simpson syndrome and genitopatellar syndrome: Further evidence of a continuum in the clinical spectrum of <i>KAT6B</i> â€related disorders. American Journal of Medical Genetics, Part A, 2018, 176, 455-459.	0.7	11
45	Germline pathogenic variant in <i>PIK3CA</i> leading to symmetrical overgrowth with marked macrocephaly and mild global developmental delay. Molecular Genetics & Genomic Medicine, 2019, 7, e845.	0.6	11
46	Targeting S100A4 with niclosamide attenuates inflammatory and profibrotic pathways in models of amyotrophic lateral sclerosis. Journal of Neuroinflammation, 2021, 18, 132.	3.1	11
47	Replication of association of CHRNA4 rare variants with sporadic amyotrophic lateral sclerosis: The Italian multicentre study. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 580-584.	2.3	7
48	Novel variants and cellular studies on patients' primary fibroblasts support a role for NEK1 missense variants in ALS pathogenesis. Human Molecular Genetics, 2021, 30, 65-71.	1.4	7
49	<i>SLITRK2</i> , an X-linked modifier of the age at onset in <i>C9orf72</i> frontotemporal lobar degeneration. Brain, 2021, 144, 2798-2811.	3.7	7
50	Screening UBQLN-2 in French frontotemporal lobar degeneration and frontotemporal lobar degeneration–amyotrophic lateral sclerosis patients. Neurobiology of Aging, 2013, 34, 2078.e5-2078.e6.	1.5	6
51	Adult phenotype in Koolen-de Vries/ <i>KANSL1</i> haploinsufficiency syndrome. Journal of Medical Genetics, 2022, 59, 189-195.	1.5	6
52	Wolf–Hirschhorn syndrome due to pure and translocation forms of monosomy 4p16.1 → pter. Amer Journal of Medical Genetics, Part A, 2011, 155, 1833-1847.	ican 0.7	4
53	Founder effect hypothesis of D11Y SOD1 mutation in Italian amyotrophic lateral sclerosis patients. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 241-242.	2.3	4
54	SOD1 p.D12Y variant is associated with amyotrophic lateral sclerosis/distal myopathy spectrum. European Journal of Neurology, 2020, 27, 1304-1309.	1.7	4

SERENA LATTANTE

#	Article	IF	CITATIONS
55	Generation and characterization of a human iPSC line from an ALS patient carrying the Q66K-MATR3 mutation. Stem Cell Research, 2018, 33, 146-150.	0.3	3
56	FUS mutations dominate TBK1 mutations in FUS/TBK1 double-mutant ALS/FTD pedigrees. Neurogenetics, 2022, 23, 59-65.	0.7	3
57	Characterization of the p.L145F and p.S135N Mutations in SOD1: Impact on the Metabolism of Fibroblasts Derived from Amyotrophic Lateral Sclerosis Patients. Antioxidants, 2022, 11, 815.	2.2	3
58	Peripheral neuropathy and 46XY gonadal dysgenesis: Confirmation of a heterogeneous entity. Clinical Neurology and Neurosurgery, 2012, 114, 748-750.	0.6	2
59	Generation of an induced pluripotent stem cell line (CSS012-A (7672)) carrying the p.G376D heterozygous mutation in the TARDBP protein. Stem Cell Research, 2021, 53, 102356.	0.3	1
60	Generation of an induced pluripotent stem cell line (UCSCi002-A) from a patient with a variant in TARDBP gene associated with familial amyotrophic lateral sclerosis and frontotemporal dementia. Stem Cell Research, 2022, 62, 102825.	0.3	1
61	Generation of an induced pluripotent stem cell line (UCSCi001-A) from a patient with early-onset amyotrophic lateral sclerosis carrying a FUS variant. Stem Cell Research, 2021, 55, 102461.	0.3	0