Fan Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8565417/publications.pdf

Version: 2024-02-01

435 papers 42,291 citations

107 h-index 184 g-index

438 all docs

438 docs citations

times ranked

438

22846 citing authors

#	Article	IF	CITATIONS
1	Graphitic carbon nitride based nanocomposites: a review. Nanoscale, 2015, 7, 15-37.	2.8	1,440
2	In Situ Construction of g-C ₃ N ₄ /g-C ₃ N ₄ Metal-Free Heterojunction for Enhanced Visible-Light Photocatalysis. ACS Applied Materials & Discrete amp; Interfaces, 2013, 5, 11392-11401.	4.0	1,102
3	Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. Journal of Materials Chemistry, 2011, 21, 15171.	6.7	940
4	Bridging the g-C ₃ N ₄ Interlayers for Enhanced Photocatalysis. ACS Catalysis, 2016, 6, 2462-2472.	5.5	869
5	MnO ₂ -based nanostructures for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 21380-21423.	5.2	817
6	Anionic Group Self-Doping as a Promising Strategy: Band-Gap Engineering and Multi-Functional Applications of High-Performance CO ₃ ^{2â€"} -Doped Bi ₂ O ₂ CO ₃ . ACS Catalysis, 2015, 5, 4094-4103.	5.5	690
7	Precursor-reforming protocol to 3D mesoporous g-C 3 N 4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy, 2017, 38, 72-81.	8.2	596
8	In situ assembly of BiOl@Bi $12 O 17 Cl 2 p$ - n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOl $\{001\}$ active facets for robust and nonselective photocatalysis. Applied Catalysis B: Environmental, 2016 , 199 , 75 - 86 .	10.8	577
9	Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy, 2021, 81, 105671.	8.2	517
10	Threeâ€inâ€One Oxygen Vacancies: Whole Visibleâ€Spectrum Absorption, Efficient Charge Separation, and Surface Site Activation for Robust CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2019, 58, 3880-3884.	7.2	483
11	An Advanced Semimetal–Organic Bi Spheres– <i>g</i> -C ₃ N ₄ Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification. Environmental Science & Technology, 2015, 49, 12432-12440.	4.6	473
12	Noble Metal-Like Behavior of Plasmonic Bi Particles as a Cocatalyst Deposited on (BiO) ₂ CO ₃ Microspheres for Efficient Visible Light Photocatalysis. ACS Catalysis, 2014, 4, 4341-4350.	5.5	441
13	Immobilization of Polymeric g-C ₃ N ₄ on Structured Ceramic Foam for Efficient Visible Light Photocatalytic Air Purification with Real Indoor Illumination. Environmental Science & Environmental &	4.6	436
14	Structural Directed Growth of Ultrathin Parallel Birnessite on β-MnO ₂ for High-Performance Asymmetric Supercapacitors. ACS Nano, 2018, 12, 1033-1042.	7.3	436
15	Synthesis of MoS $_2$ /g-C $_3$ N $_4$ nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide (NO). Optics Express, 2016, 24, 10205.	1.7	415
16	Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Applied Surface Science, 2015, 358, 393-403.	3.1	378
17	Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO ₂ Nanomaterials Prepared by a Green Synthetic Approach. Journal of Physical Chemistry C, 2011, 115, 13285-13292.	1.5	365
18	Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. Journal of Colloid and Interface Science, 2013, 401, 70-79.	5.0	358

#	Article	IF	Citations
19	Bi ₂ O ₂ (OH)(NO ₃) as a desirable [Bi ₂ O ₂] ²⁺ layered photocatalyst: strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability. lournal of Materials Chemistry A, 2015, 3, 24547-24556.	5.2	352
20	Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers. Journal of Hazardous Materials, 2012, 219-220, 26-34.	6.5	333
21	Water-assisted production of honeycomb-like g-C ₃ N ₄ with ultralong carrier lifetime and outstanding photocatalytic activity. Nanoscale, 2015, 7, 2471-2479.	2.8	328
22	Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis. Applied Catalysis B: Environmental, 2017, 203, 465-474.	10.8	328
23	Template-free precursor-surface-etching route to porous, thin g-C ₃ N ₄ nanosheets for enhancing photocatalytic reduction and oxidation activity. Journal of Materials Chemistry A, 2017, 5, 17452-17463.	5. 2	324
24	In situ co-pyrolysis fabrication of CeO ₂ /g-C ₃ N ₄ n–n type heterojunction for synchronously promoting photo-induced oxidation and reduction properties. Journal of Materials Chemistry A, 2015, 3, 17120-17129.	5.2	319
25	Defectâ€Tailoring Mediated Electron–Hole Separation in Singleâ€Unitâ€Cell Bi ₃ O ₄ Br Nanosheets for Boosting Photocatalytic Hydrogen Evolution and Nitrogen Fixation. Advanced Materials, 2019, 31, e1807576.	11.1	311
26	WO ₃ -based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environmental Science: Nano, 2017, 4, 539-557.	2.2	297
27	Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): An efficient visible-light-driven Z-scheme hybridized photocatalyst. Applied Catalysis B: Environmental, 2017, 202, 611-619.	10.8	296
28	Rational design on 3D hierarchical bismuth oxyiodides via in situ self-template phase transformation and phase-junction construction for optimizing photocatalysis against diverse contaminants. Applied Catalysis B: Environmental, 2017, 203, 879-888.	10.8	289
29	Sol–gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Applied Surface Science, 2011, 258, 1587-1591.	3.1	286
30	Rare-Earth Single-Atom La–N Charge-Transfer Bridge on Carbon Nitride for Highly Efficient and Selective Photocatalytic CO ₂ Reduction. ACS Nano, 2020, 14, 15841-15852.	7.3	283
31	A semimetal bismuth element as a direct plasmonic photocatalyst. Chemical Communications, 2014, 50, 10386-10389.	2.2	282
32	Identification of Halogen-Associated Active Sites on Bismuth-Based Perovskite Quantum Dots for Efficient and Selective CO ₂ -to-CO Photoreduction. ACS Nano, 2020, 14, 13103-13114.	7.3	282
33	Organic-Inorganic-Induced Polymer Intercalation into Layered Composites for Aqueous Zinc-Ion Battery. CheM, 2020, 6, 968-984.	5.8	274
34	Single-unit-cell layer established Bi2WO6 3D hierarchical architectures: Efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance. Applied Catalysis B: Environmental, 2017, 219, 526-537.	10.8	264
35	Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study. Chemical Engineering Journal, 2019, 361, 129-138.	6.6	262
36	One-Step "Green―Synthetic Approach for Mesoporous C-Doped Titanium Dioxide with Efficient Visible Light Photocatalytic Activity. Journal of Physical Chemistry C, 2009, 113, 16717-16723.	1.5	260

#	Article	IF	CITATIONS
37	Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4. Chemical Engineering Journal, 2020, 379, 122282.	6.6	260
38	Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance. Catalysis Science and Technology, 2012, 2, 1332.	2.1	253
39	Identification of Active Hydrogen Species on Palladium Nanoparticles for an Enhanced Electrocatalytic Hydrodechlorination of 2,4-Dichlorophenol in Water. Environmental Science & Samp; Technology, 2017, 51, 7599-7605.	4.6	249
40	Characterization and photocatalytic activities of C, N and S co-doped TiO ₂ with 1D nanostructure prepared by the nano-confinement effect. Nanotechnology, 2008, 19, 365607.	1.3	247
41	Visible-light-induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@defective BiOBr hierarchical microspheres. Journal of Catalysis, 2018, 357, 41-50.	3.1	246
42	Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective BiOCl hierarchical microspheres. Applied Catalysis B: Environmental, 2018, 225, 218-227.	10.8	238
43	Synergistic Effect of Cu Single Atoms and Au–Cu Alloy Nanoparticles on TiO ₂ for Efficient CO ₂ Photoreduction. ACS Nano, 2021, 15, 14453-14464.	7.3	236
44	Local spatial charge separation and proton activation induced by surface hydroxylation promoting photocatalytic hydrogen evolution of polymeric carbon nitride. Nano Energy, 2018, 50, 383-392.	8.2	226
45	The Spatially Oriented Charge Flow and Photocatalysis Mechanism on Internal van der Waals Heterostructures Enhanced g-C ₃ N ₄ . ACS Catalysis, 2018, 8, 8376-8385.	5.5	219
46	Novel in Situ N-Doped (BiO) ₂ CO ₃ Hierarchical Microspheres Self-Assembled by Nanosheets as Efficient and Durable Visible Light Driven Photocatalyst. Langmuir, 2012, 28, 766-773.	1.6	218
47	Theoretical and experimental investigation of highly photocatalytic performance of CulnZnS nanoporous structure for removing the NO gas. Journal of Catalysis, 2018, 357, 100-107.	3.1	214
48	2D g-C3N4 for advancement of photo-generated carrier dynamics: Status and challenges. Materials Today, 2020, 41, 270-303.	8.3	214
49	Bi Cocatalyst/Bi ₂ MoO ₆ Microspheres Nanohybrid with SPR-Promoted Visible-Light Photocatalysis. Journal of Physical Chemistry C, 2016, 120, 11889-11898.	1.5	212
50	Nickel-Manganese Layered Double Hydroxide Nanosheets Supported on Nickel Foam for High-performance Supercapacitor Electrode Materials. Electrochimica Acta, 2016, 194, 179-186.	2.6	208
51	Highly Efficient Performance and Conversion Pathway of Photocatalytic NO Oxidation on SrO-Clusters@Amorphous Carbon Nitride. Environmental Science & Environmental Science & 2017, 51, 10682-10690.	4.6	203
52	Bi metal prevents the deactivation of oxygen vacancies in Bi2O2CO3 for stable and efficient photocatalytic NO abatement. Applied Catalysis B: Environmental, 2020, 264, 118545.	10.8	197
53	Unraveling the Mechanisms of Visible Light Photocatalytic NO Purification on Earth-Abundant Insulator-Based Core–Shell Heterojunctions. Environmental Science & Technology, 2018, 52, 1479-1487.	4.6	192
54	The fabrication and characterization of novel carbon doped TiO ₂ nanotubes, nanowires and nanorods with high visible light photocatalytic activity. Nanotechnology, 2009, 20, 235701.	1.3	187

#	Article	IF	CITATIONS
55	Efficient C ₃ N ₄ /graphene oxide macroscopic aerogel visible-light photocatalyst. Journal of Materials Chemistry A, 2016, 4, 7823-7829.	5.2	185
56	Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: Photocatalysis mechanism and reaction pathway. Applied Catalysis B: Environmental, 2018, 232, 340-347.	10.8	179
57	Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction. Nature Communications, 2021, 12, 1675.	5.8	178
58	Rational nanostructure design of graphitic carbon nitride for photocatalytic applications. Journal of Materials Chemistry A, 2019, 7, 11584-11612.	5.2	174
59	Steering the interlayer energy barrier and charge flow via bioriented transportation channels in g-C3N4: Enhanced photocatalysis and reaction mechanism. Journal of Catalysis, 2017, 352, 351-360.	3.1	173
60	Recent Advances in Noncontact External-Field-Assisted Photocatalysis: From Fundamentals to Applications. ACS Catalysis, 2021, 11, 4739-4769.	5.5	173
61	Facets and defects cooperatively promote visible light plasmonic photocatalysis with Bi nanowires@BiOCl nanosheets. Journal of Catalysis, 2016, 344, 401-410.	3.1	172
62	Visible-Light Photocatalytic Removal of NO in Air over BiOX (X = Cl, Br, I) Single-Crystal Nanoplates Prepared at Room Temperature. Industrial & Engineering Chemistry Research, 2013, 52, 6740-6746.	1.8	170
63	Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: Triple-functional role for efficient visible-light photocatalytic redox performance. Applied Catalysis B: Environmental, 2018, 226, 441-450.	10.8	169
64	Role of graphene on the band structure and interfacial interaction of Bi ₂ WO ₆ /graphene composites with enhanced photocatalytic oxidation of NO. Journal of Materials Chemistry A, 2014, 2, 16623-16631.	5.2	166
65	Facet-dependent interfacial charge separation and transfer in plasmonic photocatalysts. Applied Catalysis B: Environmental, 2018, 226, 269-277.	10.8	166
66	Probing ring-opening pathways for efficient photocatalytic toluene decomposition. Journal of Materials Chemistry A, 2019, 7, 3366-3374.	5.2	166
67	Synergistic integration of Bi metal and phosphate defects on hexagonal and monoclinic BiPO4: Enhanced photocatalysis and reaction mechanism. Applied Catalysis B: Environmental, 2019, 243, 313-321.	10.8	166
68	Monodisperse bismuth nanoparticles decorated graphitic carbon nitride: Enhanced visible-light-response photocatalytic NO removal and reaction pathway. Applied Catalysis B: Environmental, 2017, 205, 532-540.	10.8	162
69	Photocatalytic Oxidative Dehydrogenation of Ethane Using CO ₂ as a Soft Oxidant over Pd/TiO ₂ Catalysts to C ₂ H ₄ and Syngas. ACS Catalysis, 2018, 8, 9280-9286.	5.5	162
70	Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity. Applied Catalysis B: Environmental, 2020, 262, 118281.	10.8	162
71	Rational design of octahedron and nanowire CeO ₂ @MnO ₂ core–shell heterostructures with outstanding rate capability for asymmetric supercapacitors. Chemical Communications, 2015, 51, 14840-14843.	2.2	160
72	Efficient and Durable Visible Light Photocatalytic Performance of Porous Carbon Nitride Nanosheets for Air Purification. Industrial & Engineering Chemistry Research, 2014, 53, 2318-2330.	1.8	159

#	Article	IF	Citations
73	Directional electron delivery via a vertical channel between g-C ₃ N ₄ layers promotes photocatalytic efficiency. Journal of Materials Chemistry A, 2017, 5, 9358-9364.	5.2	159
74	Promoting ring-opening efficiency for suppressing toxic intermediates during photocatalytic toluene degradation via surface oxygen vacancies. Science Bulletin, 2019, 64, 669-678.	4.3	159
75	Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi2O2SiO3. Applied Catalysis B: Environmental, 2019, 241, 187-195.	10.8	158
76	A coreâ€"satellite structured Z-scheme catalyst Cd _{0.5} Zn _{0.5} S/BiVO ₄ for highly efficient and stable photocatalytic water splitting. Journal of Materials Chemistry A, 2018, 6, 16932-16942.	5.2	154
77	Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: One-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air. Journal of Hazardous Materials, 2011, 195, 346-354.	6.5	151
78	Morphologically confined hybridization of tiny CoNi2S4 nanosheets into S, P co-doped graphene leading to enhanced pseudocapacitance and rate capability. Chemical Engineering Journal, 2020, 379, 122305.	6.6	148
79	Fabrication, modification and application of (BiO)2CO3-based photocatalysts: A review. Applied Surface Science, 2016, 365, 314-335.	3.1	147
80	Controlling interfacial contact and exposed facets for enhancing photocatalysis via 2D–2D heterostructures. Chemical Communications, 2015, 51, 8249-8252.	2.2	145
81	Tailoring the rate-determining step in photocatalysis via localized excess electrons for efficient and safe air cleaning. Applied Catalysis B: Environmental, 2018, 239, 187-195.	10.8	145
82	Band structure engineering and efficient charge transport in oxygen substituted g-C3N4 for superior photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 230, 115-124.	10.8	143
83	Template-free fabrication and growth mechanism of uniform (BiO)2CO3 hierarchical hollow microspheres with outstanding photocatalytic activities under both UV and visible light irradiation. Journal of Materials Chemistry, 2011, 21, 12428.	6.7	142
84	Reactant activation and photocatalysis mechanisms on Bi-metal@Bi2GeO5 with oxygen vacancies: A combined experimental and theoretical investigation. Chemical Engineering Journal, 2019, 370, 1366-1375.	6.6	141
85	Tunable design of layered CuCo ₂ O ₄ nanosheets@MnO ₂ nanoflakes core–shell arrays on Ni foam for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 21528-21536.	5.2	139
86	Defective Bi4MoO9/Bi metal core/shell heterostructure: Enhanced visible light photocatalysis and reaction mechanism. Applied Catalysis B: Environmental, 2018, 239, 619-627.	10.8	139
87	Fe-ions modified mesoporous Bi2WO6 nanosheets with high visible light photocatalytic activity. Journal of Colloid and Interface Science, 2012, 369, 373-380.	5.0	138
88	Facile synthesis of surface N-doped Bi2O2CO3: Origin of visible light photocatalytic activity and in situ DRIFTS studies. Journal of Hazardous Materials, 2016, 307, 163-172.	6.5	138
89	Growth of BiOBr nanosheets on C3N4 nanosheets to construct two-dimensional nanojunctions with enhanced photoreactivity for NO removal. Journal of Colloid and Interface Science, 2014, 418, 317-323.	5.0	136
90	Activation of amorphous bismuth oxide via plasmonic Bi metal for efficient visible-light photocatalysis. Journal of Catalysis, 2017, 352, 102-112.	3.1	135

#	Article	IF	Citations
91	Optimizing the rate capability of nickel cobalt phosphide nanowires on graphene oxide by the outer/inter-component synergistic effects. Journal of Materials Chemistry A, 2020, 8, 1697-1708.	5.2	135
92	Enhancing ROS generation and suppressing toxic intermediate production in photocatalytic NO oxidation on O/Ba co-functionalized amorphous carbon nitride. Applied Catalysis B: Environmental, 2018, 237, 938-946.	10.8	134
93	Three dimensional Z-scheme (BiO) 2 CO 3 /MoS 2 with enhanced visible light photocatalytic NO removal. Applied Catalysis B: Environmental, 2016, 199, 87-95.	10.8	133
94	Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride. Journal of Hazardous Materials, 2008, 157, 57-63.	6.5	132
95	Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO2 nanoparticles prepared by thermal decomposition. Journal of Hazardous Materials, 2009, 162, 763-770.	6.5	132
96	Immobilizing perovskite CsPbBr3 nanocrystals on Black phosphorus nanosheets for boosting charge separation and photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2020, 277, 119230.	10.8	132
97	KCl-mediated dual electronic channels in layered g-C ₃ N ₄ for enhanced visible light photocatalytic NO removal. Nanoscale, 2018, 10, 8066-8074.	2.8	126
98	The activation of reactants and intermediates promotes the selective photocatalytic NO conversion on electron-localized Sr-intercalated g-C3N4. Applied Catalysis B: Environmental, 2018, 232, 69-76.	10.8	125
99	Co and Pt Dualâ€Singleâ€Atoms with Oxygenâ€Coordinated Co–O–Pt Dimer Sites for Ultrahigh Photocatalytic Hydrogen Evolution Efficiency. Advanced Materials, 2021, 33, e2003327.	11.1	123
100	Interfacial Electrolyte Effects on Electrocatalytic CO ₂ Reduction. ACS Catalysis, 2022, 12, 331-362.	5.5	123
101	Multifunctional g-C 3 N 4 /graphene oxide wrapped sponge monoliths as highly efficient adsorbent and photocatalyst. Applied Catalysis B: Environmental, 2018, 235, 17-25.	10.8	117
102	Simultaneously promoting charge separation and photoabsorption of BiOX ($X = Cl$, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar. Applied Surface Science, 2016, 386, 285-295.	3.1	116
103	Bimetallic Composition-Promoted Electrocatalytic Hydrodechlorination Reaction on Silver–Palladium Alloy Nanoparticles. ACS Catalysis, 2019, 9, 10803-10811.	5.5	115
104	2D-2D growth of NiFe LDH nanoflakes on montmorillonite for cationic and anionic dye adsorption performance. Journal of Colloid and Interface Science, 2019, 540, 398-409.	5.0	115
105	Noble metal-free Bi nanoparticles supported on TiO ₂ with plasmon-enhanced visible light photocatalytic air purification. Environmental Science: Nano, 2016, 3, 1306-1317.	2.2	114
106	Synchronously Achieving Plasmonic Bi Metal Deposition and I ^{â€"} Doping by Utilizing BiOIO ₃ as the Self-Sacrificing Template for High-Performance Multifunctional Applications. ACS Applied Materials & District Supplies and Supplications. ACS Applied Materials & District Supplies	4.0	113
107	Low-cost high-performance asymmetric supercapacitors based on Co ₂ AlO ₄ @MnO ₂ nanosheets and Fe ₃ O ₄ nanoflakes. Journal of Materials Chemistry A, 2016, 4, 2096-2104.	5.2	111
108	Synergistic effects of crystal structure and oxygen vacancy on Bi2O3 polymorphs: intermediates activation, photocatalytic reaction efficiency, and conversion pathway. Science Bulletin, 2020, 65, 467-476.	4.3	108

#	Article	IF	CITATIONS
109	Electrocatalytic hydrodechlorination of 2,4-dichlorophenol over palladium nanoparticles and its pH-mediated tug-of-war with hydrogen evolution. Chemical Engineering Journal, 2018, 348, 26-34.	6.6	104
110	Mechanism of visible light photocatalytic NO _x oxidation with plasmonic Bi cocatalyst-enhanced (BiO) ₂ CO ₃ hierarchical microspheres. Physical Chemistry Chemical Physics, 2015, 17, 10383-10390.	1.3	103
111	In situ synthesis of a C-doped (BiO) < sub>2 < /sub>CO < sub>3 < /sub> hierarchical self-assembly effectively promoting visible light photocatalysis. Journal of Materials Chemistry A, 2015, 3, 6118-6127.	5.2	103
112	Directional electron delivery and enhanced reactants activation enable efficient photocatalytic air purification on amorphous carbon nitride co-functionalized with O/La. Applied Catalysis B: Environmental, 2019, 242, 19-30.	10.8	103
113	Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration. Applied Surface Science, 2015, 358, 356-362.	3.1	101
114	New insights into how Pd nanoparticles influence the photocatalytic oxidation and reduction ability of g-C ₃ N ₄ nanosheets. Catalysis Science and Technology, 2016, 6, 6448-6458.	2.1	101
115	In situ FT-IR investigation on the reaction mechanism of visible light photocatalytic NO oxidation with defective g-C3N4. Science Bulletin, 2018, 63, 117-125.	4.3	101
116	Boosting Visible-Light-Driven Photo-oxidation of BiOCl by Promoted Charge Separation via Vacancy Engineering. ACS Sustainable Chemistry and Engineering, 2019, 7, 3010-3017.	3.2	101
117	Highly Efficient Bi ₂ O ₂ CO ₃ Single-Crystal Lamellas with Dominantly Exposed {001} Facets. Crystal Growth and Design, 2015, 15, 534-537.	1.4	99
118	Unraveling the mechanism of binary channel reactions in photocatalytic formaldehyde decomposition for promoted mineralization. Applied Catalysis B: Environmental, 2020, 260, 118130.	10.8	99
119	In situ decoration of plasmonic Ag nanocrystals on the surface of (BiO) ₂ CO ₃ hierarchical microspheres for enhanced visible light photocatalysis. Dalton Transactions, 2014, 43, 9468-9480.	1.6	98
120	Bi metal sphere/graphene oxide nanohybrids with enhanced direct plasmonic photocatalysis. Applied Catalysis B: Environmental, 2017, 214, 148-157.	10.8	98
121	Synergistic Photocatalytic Decomposition of a Volatile Organic Compound Mixture: High Efficiency, Reaction Mechanism, and Long-Term Stability. ACS Catalysis, 2020, 10, 7230-7239.	5.5	98
122	Ti3C2 MXene modified g-C3N4 with enhanced visible-light photocatalytic performance for NO purification. Journal of Colloid and Interface Science, 2020, 575, 443-451.	5.0	98
123	A general method for type I and type II g-C ₃ N ₄ /g-C ₃ N ₄ metal-free isotype heterostructures with enhanced visible light photocatalysis. New Journal of Chemistry, 2015, 39, 4737-4744.	1.4	95
124	Frustrated Lewis Pair Sites Boosting CO ₂ Photoreduction on Cs ₂ CuBr ₄ Perovskite Quantum Dots. ACS Catalysis, 2022, 12, 2915-2926.	5.5	94
125	Morphology and crystallinity-controlled synthesis of manganese cobalt oxide/manganese dioxides hierarchical nanostructures for high-performance supercapacitors. Journal of Power Sources, 2015, 296, 86-91.	4.0	93
126	Facile synthesis of organic–inorganic layered nanojunctions of g-C ₃ N ₄ /(BiO) ₂ CO ₃ as efficient visible light photocatalyst. Dalton Transactions, 2014, 43, 12026-12036.	1.6	92

#	Article	IF	CITATIONS
127	Enhancing the photocatalytic activity of bulk g-C3N4 by introducing mesoporous structure and hybridizing with graphene. Journal of Colloid and Interface Science, 2014, 436, 29-36.	5.0	92
128	Bismuth spheres assembled on graphene oxide: Directional charge transfer enhances plasmonic photocatalysis and in situ DRIFTS studies. Applied Catalysis B: Environmental, 2018, 221, 482-489.	10.8	92
129	Template synthesis of carbon self-doped g-C ₃ N ₄ with enhanced visible to near-infrared absorption and photocatalytic performance. RSC Advances, 2015, 5, 39549-39556.	1.7	91
130	Easily and Synchronously Ameliorating Charge Separation and Band Energy Level in Porous g-C ₃ N ₄ for Boosting Photooxidation and Photoreduction Ability. Journal of Physical Chemistry C, 2016, 120, 10381-10389.	1.5	91
131	Phase and morphology evolution of CoAl LDH nanosheets towards advanced supercapacitor applications. CrystEngComm, 2019, 21, 4934-4942.	1.3	91
132	Cu supported on polymeric carbon nitride for selective CO ₂ reduction into CH ₄ : a combined kinetics and thermodynamics investigation. Journal of Materials Chemistry A, 2019, 7, 17014-17021.	5.2	90
133	Engineering of three dimensional (3-D) diatom@TiO2@MnO2 composites with enhanced supercapacitor performance. Electrochimica Acta, 2016, 190, 159-167.	2.6	89
134	Plasmonic Bi metal as cocatalyst and photocatalyst: The case of Bi/(BiO) 2 CO 3 and Bi particles. Journal of Colloid and Interface Science, 2017, 485, 1-10.	5.0	89
135	The pivotal roles of spatially separated charge localization centers on the molecules activation and photocatalysis mechanism. Applied Catalysis B: Environmental, 2020, 262, 118251.	10.8	89
136	Marked enhancement of photocatalytic activity and photochemical stability of N–doped TiO2 nanocrystals by Fe3+/Fe2+ surface modification. Journal of Colloid and Interface Science, 2010, 343, 200-208.	5.0	88
137	From semiconductors to semimetals: bismuth as a photocatalyst for NO oxidation in air. Journal of Materials Chemistry A, 2014, 2, 11065-11072.	5.2	88
138	Morphology-controlled MnO ₂ modified silicon diatoms for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 10856-10865.	5.2	88
139	Rapid Self-Decomposition of g-C ₃ N ₄ During Gas–Solid Photocatalytic CO ₂ Reduction and Its Effects on Performance Assessment. ACS Catalysis, 2022, 12, 4560-4570.	5.5	86
140	The importance of intermediates ring-opening in preventing photocatalyst deactivation during toluene decomposition. Applied Catalysis B: Environmental, 2020, 272, 118977.	10.8	84
141	Enhanced visible light photocatalytic activity of novel Pt/C-doped TiO2/PtCl4 three-component nanojunction system for degradation of toluene in air. Journal of Hazardous Materials, 2011, 187, 509-516.	6.5	83
142	(NH4)2CO3 mediated hydrothermal synthesis of N-doped (BiO)2CO3 hollow nanoplates microspheres as high-performance and durable visible light photocatalyst for air cleaning. Chemical Engineering Journal, 2013, 214, 198-207.	6.6	83
143	The activation of oxygen through oxygen vacancies in BiOCl/PPy to inhibit toxic intermediates and enhance the activity of photocatalytic nitric oxide removal. Nanoscale, 2019, 11, 6360-6367.	2.8	83
144	Theoretical design and experimental investigation on highly selective Pd particles decorated C3N4 for safe photocatalytic NO purification. Journal of Hazardous Materials, 2020, 392, 122357.	6.5	81

#	Article	IF	CITATIONS
145	Nature-Derived Approach to Oxygen and Chlorine Dual-Vacancies for Efficient Photocatalysis and Photoelectrochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 2395-2406.	3.2	80
146	One-pot template-free synthesis, growth mechanism and enhanced photocatalytic activity of monodisperse (BiO)2CO3 hierarchical hollow microspheres self-assembled with single-crystalline nanosheets. CrystEngComm, 2012, 14, 3534.	1.3	79
147	Low-temperature selective catalytic reduction of NO _x with NH ₃ over a manganese and cerium oxide/graphene composite prepared by a hydrothermal method. Catalysis Science and Technology, 2016, 6, 1507-1514.	2.1	79
148	Biâ€based photocatalysts for <scp>lightâ€driven</scp> environmental and energy applications: Structural tuning, reaction mechanisms, and challenges. EcoMat, 2020, 2, e12047.	6.8	79
149	Synergistic integration of metallic Bi and defects on BiOI: Enhanced photocatalytic NO removal and conversion pathway. Chinese Journal of Catalysis, 2019, 40, 826-836.	6.9	78
150	Engineering Ultrathin Co(OH) ₂ Nanosheets on Dandelion–like CuCo ₂ O ₄ Microspheres for Binderâ€Free Supercapacitors. ChemElectroChem, 2017, 4, 721-727.	1.7	77
151	Mechanisms of Interfacial Charge Transfer and Photocatalytic NO Oxidation on BiOBr/SnO ₂ p–n Heterojunctions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43741-43749.	4.0	77
152	Bi quantum dots implanted 2D C-doped BiOCl nanosheets: Enhanced visible light photocatalysis efficiency and reaction pathway. Chinese Journal of Catalysis, 2020, 41, 1430-1438.	6.9	77
153	Bismuth nanoparticles and oxygen vacancies synergistically attired Zn2SnO4 with optimized visible-light-active performance. Nano Energy, 2021, 80, 105415.	8.2	77
154	Facile Approach for the Syntheses of Ultrafine TiO ₂ Nanocrystallites with Defects and C Heterojunction for Photocatalytic Water Splitting. ACS Sustainable Chemistry and Engineering, 2016, 4, 4314-4320.	3.2	76
155	Monolayer Epitaxial Heterostructures for Selective Visible‣ightâ€Ðriven Photocatalytic NO Oxidation. Advanced Functional Materials, 2019, 29, 1808084.	7.8	76
156	Oxygen vacancy engineering of self-doped SnO _{2â^'x} nanocrystals for ultrasensitive NO ₂ detection. Journal of Materials Chemistry C, 2020, 8, 487-494.	2.7	76
157	Surface oxygen-vacancy induced photocatalytic activity of La(OH) < sub > 3 < /sub > nanorods prepared by a fast and scalable method. Physical Chemistry Chemical Physics, 2015, 17, 16058-16066.	1.3	75
158	Three-dimensional MoS 2 /reduced graphene oxide aerogel as a macroscopic visible-light photocatalyst. Chinese Journal of Catalysis, 2017, 38, 313-320.	6.9	75
159	Synergistic photo-thermal catalytic NO purification of MnO /g-C3N4: Enhanced performance and reaction mechanism. Chinese Journal of Catalysis, 2018, 39, 619-629.	6.9	75
160	Pd-TiO2 Schottky heterojunction catalyst boost the electrocatalytic hydrodechlorination reaction. Chemical Engineering Journal, 2020, 381, 122673.	6.6	75
161	Efficient visible light photocatalytic oxidation of NO in air with band-gap tailored (BiO)2CO3–BiOI solid solutions. Chemical Engineering Journal, 2014, 255, 650-658.	6.6	74
162	Achieving tunable photocatalytic activity enhancement by elaborately engineering composition-adjustable polynary heterojunctions photocatalysts. Applied Catalysis B: Environmental, 2016, 194, 62-73.	10.8	73

#	Article	IF	CITATIONS
163	2D BiOCl/Bi 12 O 17 Cl 2 nanojunction: Enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation. Applied Surface Science, 2018, 430, 571-577.	3.1	73
164	Photocatalytic NO oxidation on N-doped TiO2/g-C3N4 heterojunction: Enhanced efficiency, mechanism and reaction pathway. Applied Surface Science, 2018, 458, 77-85.	3.1	73
165	Highly enhanced visible-light photocatalytic NO x purification and conversion pathway on self-structurally modified g-C 3 N 4 nanosheets. Science Bulletin, 2018, 63, 609-620.	4.3	72
166	Ba-vacancy induces semiconductor-like photocatalysis on insulator BaSO4. Applied Catalysis B: Environmental, 2019, 253, 293-299.	10.8	72
167	Mass-Controlled Direct Synthesis of Graphene-like Carbon Nitride Nanosheets with Exceptional High Visible Light Activity. Less is Better. Scientific Reports, 2015, 5, 14643.	1.6	71
168	New insights into how RGO influences the photocatalytic performance of BiOIO3/RGO nanocomposites under visible and UV irradiation. Journal of Colloid and Interface Science, 2015, 447, 16-24.	5.0	71
169	The pseudocapacitance mechanism of graphene/CoAl LDH and its derivatives: Are all the modifications beneficial?. Journal of Energy Chemistry, 2021, 52, 218-227.	7.1	71
170	A new strategy for utilization of NIR from solar energyâ€"Promotion effect generated from photothermal effect of Fe3O4@SiO2 for photocatalytic oxidation of NO. Applied Catalysis B: Environmental, 2017, 204, 584-592.	10.8	70
171	Crystal morphology evolution of Ni–Co layered double hydroxide nanostructure towards high-performance biotemplate asymmetric supercapacitors. CrystEngComm, 2018, 20, 7428-7434.	1.3	70
172	Photoswitchable Chlorine Vacancies in Ultrathin Bi ₄ O ₅ Cl ₂ for Selective CO ₂ Photoreduction. ACS Catalysis, 2022, 12, 3965-3973.	5.5	69
173	The Crystal Plane is not the Key Factor for CO ₂ â€toâ€Methane Electrosynthesis on Reconstructed Cu ₂ O Microparticles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	69
174	Fabrication of Heterogeneous-Phase Solid-Solution Promoting Band Structure and Charge Separation for Enhancing Photocatalytic CO ₂ Reduction: A Case of Zn <i>_X</i> Ca _{1â€"<i>X</i>} In ₂ S ₄ . ACS Applied Materials & Amp; Interfaces, 2017, 9, 27773-27783.	4.0	68
175	SnO2 quantum dots anchored on g-C3N4 for enhanced visible-light photocatalytic removal of NO and toxic NO2 inhibition. Applied Surface Science, 2019, 496, 143630.	3.1	68
176	Tuning the reaction pathway of photocatalytic NO oxidation process to control the secondary pollution on monodisperse Au nanoparticles@g-C3N4. Chemical Engineering Journal, 2019, 378, 122184.	6.6	68
177	Growth of cobalt-aluminum layered double hydroxide nanosheets on graphene oxide towards high performance supercapacitors: The important role of layer structure. Applied Surface Science, 2019, 496, 143700.	3.1	68
178	Crystal structure of nickel manganese-layered double hydroxide@cobaltosic oxides on nickel foam towards high-performance supercapacitors. CrystEngComm, 2019, 21, 470-477.	1.3	68
179	Synergistic integration of thermocatalysis and photocatalysis on black defective (BiO) ₂ CO ₃ microspheres. Journal of Materials Chemistry A, 2015, 3, 18466-18474.	5.2	67
180	Solvent-assisted synthesis of porous g-C 3 N 4 with efficient visible-light photocatalytic performance for NO removal. Chinese Journal of Catalysis, 2017, 38, 372-378.	6.9	67

#	Article	IF	Citations
181	Effects of Morphology and Crystallinity on the Photocatalytic Activity of (BiO) ₂ CO ₃ Nano/microstructures. Industrial & Engineering Chemistry Research, 2014, 53, 15002-15011.	1.8	66
182	Interlayer-I-doped BiOIO ₃ nanoplates with an optimized electronic structure for efficient visible light photocatalysis. Chemical Communications, 2016, 52, 8243-8246.	2.2	66
183	Efficient visible light photocatalytic oxidation of NO with hierarchical nanostructured 3D flower-like BiOClxBr1â^'x solid solutions. Journal of Alloys and Compounds, 2016, 671, 318-327.	2.8	66
184	Controlled synthesis, growth mechanism and highly efficient solar photocatalysis of nitrogen-doped bismuth subcarbonate hierarchical nanosheets architectures. Dalton Transactions, 2012, 41, 8270.	1.6	65
185	Facile <i>In Situ</i> Self-Sacrifice Approach to Ternary Hierarchical Architecture Ag/AgX (X = Cl, Br,) Tj ETQq1 1 (Mechanism. ACS Sustainable Chemistry and Engineering, 2016, 4, 3305-3315.	0.784314 3 . 2	rgBT /Overloc 65
186	Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi2O2CO3 nanosheets. Chinese Journal of Catalysis, 2019, 40, 620-630.	6.9	65
187	Preparation of Porous Graphene@Mn ₃ O ₄ and Its Application in the Oxygen Reduction Reaction and Supercapacitor. ACS Sustainable Chemistry and Engineering, 2019, 7, 831-837.	3.2	65
188	Single Precursor Mediated-Synthesis of Bi Semimetal Deposited N-Doped (BiO) ₂ CO ₃ Superstructures for Highly Promoted Photocatalysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 2969-2979.	3.2	64
189	N-Doped Bi ₂ O ₂ CO ₃ /Graphene Quantum Dot Composite Photocatalyst: Enhanced Visible-Light Photocatalytic NO Oxidation and In Situ DRIFTS Studies. Journal of Physical Chemistry C, 2017, 121, 12168-12177.	1.5	64
190	Defect in reduced graphene oxide tailored selectivity of photocatalytic CO2 reduction on Cs4PbBr6 pervoskite hole-in-microdisk structure. Nano Energy, 2020, 78, 105388.	8.2	64
191	A Bi/BiOI/(BiO)2CO3 heterostructure for enhanced photocatalytic NO removal under visible light. Chinese Journal of Catalysis, 2019, 40, 362-370.	6.9	63
192	Biotemplate derived three dimensional nitrogen doped graphene@MnO2 as bifunctional material for supercapacitor and oxygen reduction reaction catalyst. Journal of Colloid and Interface Science, 2019, 544, 155-163.	5.0	63
193	Tailoring Active Sites via Synergy between Graphitic and Pyridinic N for Enhanced Catalytic Efficiency of a Carbocatalyst. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19861-19869.	4.0	62
194	Uncovering the synergy between Mn substitution and O vacancy in ZnAl-LDH photocatalyst for efficient toluene removal. Applied Catalysis B: Environmental, 2021, 296, 120376.	10.8	62
195	Atomic interfacial structure and charge transfer mechanism on in-situ formed BiOl/Bi2O2SO4 p–n heterojunctions with highly promoted photocatalysis. Applied Catalysis B: Environmental, 2021, 297, 120492.	10.8	62
196	Light-Induced Generation and Regeneration of Oxygen Vacancies in BiSbO ₄ for Sustainable Visible Light Photocatalysis. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47984-47991.	4.0	61
197	Efficient and stable photocatalytic NO removal on C self-doped g-C ₃ N ₄ : electronic structure and reaction mechanism. Catalysis Science and Technology, 2018, 8, 3387-3394.	2.1	60
198	BaWO4/g-C3N4 heterostructure with excellent bifunctional photocatalytic performance. Chemical Engineering Journal, 2020, 385, 123833.	6.6	60

#	Article	IF	Citations
199	C3N4 with engineered three coordinated (N3C) nitrogen vacancy boosts the production of 1O2 for Efficient and stable NO photo-oxidation. Chemical Engineering Journal, 2020, 389, 124421.	6.6	60
200	Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis. Nature Communications, 2022, 13, 1098.	5.8	60
201	lodide surface decoration: a facile and efficacious approach to modulating the band energy level of semiconductors for high-performance visible-light photocatalysis. Chemical Communications, 2016, 52, 354-357.	2.2	59
202	Nature-inspired CaCO3 loading TiO2 composites for efficient and durable photocatalytic mineralization of gaseous toluene. Science Bulletin, 2020, 65, 1626-1634.	4.3	59
203	Coupling Electrocatalytic Nitric Oxide Oxidation over Carbon Cloth with Hydrogen Evolution Reaction for Nitrate Synthesis. Angewandte Chemie - International Edition, 2021, 60, 24605-24611.	7.2	59
204	Carbonate-intercalated defective bismuth tungstate for efficiently photocatalytic NO removal and promotion mechanism study. Applied Catalysis B: Environmental, 2019, 254, 206-213.	10.8	58
205	Single-Atom Ru-Implanted Metal–Organic Framework/MnO ₂ for the Highly Selective Oxidation of NO _{<i>x</i>} by Plasma Activation. ACS Catalysis, 2020, 10, 10185-10196.	5.5	58
206	Improving visible-light-driven photocatalytic NO oxidation over BiOBr nanoplates through tunable oxygen vacancies. Chinese Journal of Catalysis, 2018, 39, 779-789.	6.9	57
207	Unveiling the unconventional roles of methyl number on the ring-opening barrier in photocatalytic decomposition of benzene, toluene and o-xylene. Applied Catalysis B: Environmental, 2020, 278, 119318.	10.8	57
208	An anion-exchange strategy for 3D hierarchical (BiO) ₂ CO ₃ /amorphous Bi ₂ S ₃ heterostructures with increased solar absorption and enhanced visible light photocatalysis. RSC Advances, 2015, 5, 11714-11723.	1.7	56
209	Facile synthesis of Bi12O17Br2 and Bi4O5Br2 nanosheets: In situ DRIFTS investigation of photocatalytic NO oxidation conversion pathway. Chinese Journal of Catalysis, 2017, 38, 2030-2038.	6.9	56
210	One-step preparation of a novel SrCO ₃ /g-C ₃ N ₄ nano-composite and its application in selective adsorption of crystal violet. RSC Advances, 2018, 8, 6315-6325.	1.7	56
211	Ag/AgCl nanoparticles assembled on BiOCl/Bi12O17Cl2 nanosheets: Enhanced plasmonic visible light photocatalysis and in situ DRIFTS investigation. Applied Surface Science, 2018, 455, 236-243.	3.1	56
212	Enhancement of the visible light photocatalytic performance of C-doped TiO2 by loading with V2O5. Catalysis Communications, 2009, 11, 82-86.	1.6	55
213	Hydrothermal formation of N-doped (BiO)2CO3 honeycomb-like microspheres photocatalysts with bismuth citrate and dicyandiamide as precursors. Journal of Colloid and Interface Science, 2013, 408, 33-42.	5.0	55
214	Ternary Ag/AgCl/BiOIO3 composites for enhanced visible-light-driven photocatalysis. Chinese Journal of Catalysis, 2015, 36, 2155-2163.	6.9	54
215	Integrating the merits of two-dimensional structure and heteroatom modification into semiconductor photocatalyst to boost NO removal. Chemical Engineering Journal, 2019, 370, 944-951.	6.6	54
216	Activating earth-abundant insulator BaSO4 for visible-light induced degradation of tetracycline. Applied Catalysis B: Environmental, 2022, 307, 121182.	10.8	54

#	Article	IF	Citations
217	Heterostructured BiOI@La(OH) 3 nanorods with enhanced visible light photocatalytic NO removal. Chinese Journal of Catalysis, 2017, 38, 217-226.	6.9	53
218	Visible light induced electron transfer from a semiconductor to an insulator enables efficient photocatalytic activity on insulator-based heterojunctions. Nanoscale, 2018, 10, 15513-15520.	2.8	53
219	Ultrathin Two-Dimensional Bi-Based photocatalysts: Synthetic strategies, surface defects, and reaction mechanisms. Chemical Engineering Journal, 2021, 417, 129305.	6.6	52
220	In situ loading of MoO3 clusters on ultrathin Bi2MoO6 nanosheets for synergistically enhanced photocatalytic NO abatement. Applied Catalysis B: Environmental, 2021, 292, 120159.	10.8	51
221	Pt quantum dots deposited on N-doped (BiO) ₂ CO ₃ : enhanced visible light photocatalytic NO removal and reaction pathway. Catalysis Science and Technology, 2017, 7, 1324-1332.	2.1	50
222	Insights into Dynamic Surface Bromide Sites in Bi ₄ O ₅ Br ₂ for Sustainable N ₂ Photofixation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	50
223	Mesoporous Ni-Doped \hat{l} -Bi ₂ O ₃ Microspheres for Enhanced Solar-Driven Photocatalysis: A Combined Experimental and Theoretical Investigation. Journal of Physical Chemistry C, 2017, 121, 9394-9401.	1.5	49
224	A ball-in-ball g-C ₃ N ₄ @SiO ₂ nano-photoreactor for highly efficient H ₂ generation and NO removal. Nanoscale, 2017, 9, 5273-5279.	2.8	49
225	Facet-dependent photocatalytic NO conversion pathways predetermined by adsorption activation patterns. Nanoscale, 2019, 11, 2366-2373.	2.8	49
226	Synergistic effect of manganese dioxide and diatomite for fast decolorization and high removal capacity of methyl orange. Journal of Colloid and Interface Science, 2016, 484, 1-9.	5.0	48
227	Efficient visible light photocatalytic NOx removal with cationic Ag clusters-grafted (BiO)2CO3 hierarchical superstructures. Journal of Hazardous Materials, 2017, 322, 223-232.	6.5	48
228	Exploring the photocatalysis mechanism on insulators. Applied Catalysis B: Environmental, 2017, 219, 450-458.	10.8	48
229	Photocatalytic Platforms for Removal of Ammonia from Gaseous and Aqueous Matrixes: Status and Challenges. ACS Catalysis, 2020, 10, 8683-8716.	5 . 5	48
230	The high selectivity for benzoic acid formation on Ca2Sb2O7 enables efficient and stable toluene mineralization. Applied Catalysis B: Environmental, 2020, 271, 118948.	10.8	48
231	Enhanced extrinsic absorption promotes the visible light photocatalytic activity of wide band-gap (BiO) ₂ CO ₃ hierarchical structure. RSC Advances, 2014, 4, 56307-56312.	1.7	47
232	High visible-light photocatalytic performance of stable lead-free Cs2AgBiBr6 double perovskite nanocrystals. Journal of Catalysis, 2021, 397, 27-35.	3.1	47
233	Photoelectrocatalytic carbon dioxide reduction: Fundamental, advances and challenges. Nano Materials Science, 2021, 3, 344-367.	3.9	47
234	Facile Synthesis of Flower-like (BiO)2CO3@MnO2 and Bi2O3@MnO2 Nanocomposites for Supercapacitors. Electrochimica Acta, 2015, 168, 97-103.	2.6	46

#	Article	IF	Citations
235	Surface Lattice Oxygen Activation on Sr ₂ Sb ₂ O ₇ Enhances the Photocatalytic Mineralization of Toluene: from Reactant Activation, Intermediate Conversion to Product Desorption. ACS Applied Materials & Desorption and Samp; Interfaces, 2021, 13, 5153-5164.	4.0	46
236	Humidity-Independent Photocatalytic Toluene Mineralization Benefits from the Utilization of Edge Hydroxyls in Layered Double Hydroxides (LDHs): A Combined Operando and Theoretical Investigation. ACS Catalysis, 2021, 11, 8132-8139.	5.5	46
237	Growth mechanism and photocatalytic activity of self-organized N-doped (BiO) ₂ CO ₃ hierarchical nanosheet microspheres from bismuth citrate and urea. Dalton Transactions, 2014, 43, 6631-6642.	1.6	45
238	Immobilizing Water into Crystal Lattice of Calcium Sulfate for its Separation from Water-in-Oil Emulsion. Environmental Science & Emulsion.	4.6	45
239	Threeâ€inâ€One Oxygen Vacancies: Whole Visibleâ€Spectrum Absorption, Efficient Charge Separation, and Surface Site Activation for Robust CO ₂ Photoreduction. Angewandte Chemie, 2019, 131, 3920-3924.	1.6	45
240	Dual redox couples Ag/Ag+ and Iâ^'/(IO3)â^' self-sacrificed transformation for realizing multiplex hierarchical architectures with universally powerful photocatalytic performance. Applied Catalysis B: Environmental, 2017, 200, 620-632.	10.8	44
241	Quasi-parallel arrays with a 2D-on-2D structure for electrochemical supercapacitors. Journal of Materials Chemistry A, 2018, 6, 24717-24727.	5.2	44
242	Interfacial engineering of In2O3/InN heterostructure with promoted charge transfer for highly efficient CO2 reduction to formate. Chemical Engineering Journal, 2022, 437, 135114.	6.6	44
243	Ultrasonic Spray Pyrolysis Fabrication of Solid and Hollow PbWO ₄ Spheres with Structure-Directed Photocatalytic Activity. Journal of Physical Chemistry C, 2011, 115, 241-247.	1.5	43
244	Rational synthesis of hybrid NiCo2S4@MnO2 heterostructures for supercapacitor electrodes. Ceramics International, 2016, 42, 8909-8914.	2.3	43
245	Readily attainable spongy foam photocatalyst for promising practical photocatalysis. Applied Catalysis B: Environmental, 2017, 208, 75-81.	10.8	43
246	Facile synthesis of CeO2/g-C3N4 nanocomposites with significantly improved visible-light photocatalytic activity for hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 16154-16163.	3.8	43
247	La-doping induced localized excess electrons on (BiO)2CO3 for efficient photocatalytic NO removal and toxic intermediates suppression. Journal of Hazardous Materials, 2020, 400, 123174.	6.5	43
248	Oxygen vacancies on the BiOCl surface promoted photocatalytic complete NO oxidation via superoxide radicals. Chinese Chemical Letters, 2020, 31, 2737-2741.	4.8	43
249	Enhanced plasmonic photocatalysis by SiO 2 @Bi microspheres with hot-electron transportation channels via Bi–O–Si linkages. Chinese Journal of Catalysis, 2017, 38, 1174-1183.	6.9	42
250	Chromium-Based Metal–Organic Framework MIL-101 Decorated with CdS Quantum Dots for the Photocatalytic Synthesis of Imines. ACS Applied Nano Materials, 2019, 2, 6818-6827.	2.4	42
251	Mechanistic insight into the electrocatalytic hydrodechlorination reaction on palladium by a facet effect study. Journal of Catalysis, 2020, 391, 414-423.	3.1	42
252	Enhanced photocatalytic NO removal with the superior selectivity for NO2â^'/NO3â^' species of Bi12GeO20-based composites via a ball-milling treatment: Synergetic effect of surface oxygen vacancies and n-p heterojunctions. Composites Part B: Engineering, 2022, 231, 109600.	5.9	42

#	Article	IF	Citations
253	Metal-organic framework derived carbon-supported bimetallic copper-nickel alloy electrocatalysts for highly selective nitrate reduction to ammonia. Journal of Colloid and Interface Science, 2022, 614, 405-414.	5.0	42
254	Highly Reversible Li–Se Batteries with Ultra-Lightweight N,S-Codoped Graphene Blocking Layer. Nano-Micro Letters, 2018, 10, 59.	14.4	41
255	Simultaneous introduction of oxygen vacancies and Bi metal onto the {001} facet of Bi ₃ O ₄ Cl woven nanobelts for synergistically enhanced photocatalysis. Nanoscale, 2018, 10, 16928-16934.	2.8	41
256	Efficient \hat{l} ±-MnO2 with (2 1 0) facet exposed for catalytic oxidation of toluene at low temperature: A combined in-situ DRIFTS and theoretical investigation. Chemosphere, 2021, 263, 128103.	4.2	41
257	Deep oxidation of gaseous formaldehyde at room-temperature by a durable catalyst formed through the controlled addition of potassium to platinum supported on waste eggshell. Chemical Engineering Journal, 2022, 428, 131177.	6.6	41
258	Synthesis of BiOBr–graphene and BiOBr–graphene oxide nanocomposites with enhanced visible light photocatalytic performance. Ceramics International, 2014, 40, 9003-9008.	2.3	40
259	A self-sacrifice template route to iodine modified BiOIO ₃ : band gap engineering and highly boosted visible-light active photoreactivity. Physical Chemistry Chemical Physics, 2016, 18, 7851-7859.	1.3	40
260	Photocatalytic removal of NO by intercalated carbon nitride: The effect of group IIA element ions. Applied Catalysis B: Environmental, 2020, 273, 119007.	10.8	40
261	One-step hydrothermal synthesis of Cu-doped MnO2 coated diatomite for degradation of methylene blue in Fenton-like system. Journal of Colloid and Interface Science, 2019, 556, 466-475.	5.0	39
262	Facile construction of Bi2Mo3O12@Bi2O2CO3 heterojunctions for enhanced photocatalytic efficiency toward NO removal and study of the conversion process. Chinese Journal of Catalysis, 2020, 41, 268-275.	6.9	39
263	Activating palladium nanoparticles via a Mott-Schottky heterojunction in electrocatalytic hydrodechlorination reaction. Journal of Hazardous Materials, 2020, 389, 121876.	6.5	39
264	Layered double hydroxide nanosheets as efficient photocatalysts for NO removal: Band structure engineering and surface hydroxyl ions activation. Applied Catalysis B: Environmental, 2020, 277, 119200.	10.8	39
265	Interfacial activation of reactants and intermediates on CaSO4 insulator-based heterostructure for efficient photocatalytic NO removal. Chemical Engineering Journal, 2020, 390, 124609.	6.6	39
266	Capture of atmospheric CO2 into (BiO)2CO3/graphene or graphene oxide nanocomposites with enhanced photocatalytic performance. Applied Surface Science, 2015, 358, 75-83.	3.1	38
267	Surface Ligand Environment Boosts the Electrocatalytic Hydrodechlorination Reaction on Palladium Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4072-4083.	4.0	38
268	Mechanistic understanding of ternary Ag/AgCl@La(OH) ₃ nanorods as novel visible light plasmonic photocatalysts. Catalysis Science and Technology, 2016, 6, 5003-5010.	2.1	37
269	Calcium Sulfate Hemihydrate Nanowires: One Robust Material in Separation of Water from Water-in-Oil Emulsion. Environmental Science & Environmental Sc	4.6	37
270	Graphene oxide mediated co-generation of C-doping and oxygen defects in Bi ₂ WO ₆ nanosheets: a combined DRIFTS and DFT investigation. Nanoscale, 2019, 11, 20562-20570.	2.8	37

#	Article	IF	Citations
271	Zn-doping mediated formation of oxygen vacancies in SnO2 with unique electronic structure for efficient and stable photocatalytic toluene degradation. Chinese Journal of Catalysis, 2021, 42, 1195-1204.	6.9	37
272	Synthesis of mesoporous TiO2 nanorods via a mild template-free sonochemical route and their photocatalytic performances. Catalysis Communications, 2009, 10, 1766-1770.	1.6	36
273	Fe(<scp>iii</scp>) cluster-grafted (BiO) ₂ CO ₃ superstructures: in situ DRIFTS investigation on IFCT-enhanced visible light photocatalytic NO oxidation. Environmental Science: Nano, 2017, 4, 604-612.	2.2	36
274	High-efficiency photocatalytic decomposition of toluene over defective InOOH: Promotive role of oxygen vacancies in ring opening process. Chemical Engineering Journal, 2021, 413, 127389.	6.6	36
275	Enhanced Visible Light Photocatalytic Activity of V2O5 Cluster Modified N-Doped TiO2 for Degradation of Toluene in Air. International Journal of Photoenergy, 2012, 2012, 1-10.	1.4	35
276	Low Carbonate Contaminative and Ultrasmall NiAl LDH Prepared by Acid Salt Treatment with High Adsorption Capacity of Methyl Orange. Industrial & Engineering Chemistry Research, 2019, 58, 11985-11998.	1.8	35
277	Selective breakage of C H bonds in the key oxidation intermediates of gaseous formaldehyde on self-doped CaSn(OH)6 cubes for safe and efficient photocatalysis. Applied Catalysis B: Environmental, 2020, 277, 119214.	10.8	35
278	Surface modification to control the secondary pollution of photocatalytic nitric oxide removal over monolithic protonated g-C3N4/graphene oxide aerogel. Journal of Hazardous Materials, 2020, 397, 122822.	6.5	35
279	Light-induced halogen defects as dynamic active sites for CO2 photoreduction to CO with 100% selectivity. Science Bulletin, 2022, 67, 1137-1144.	4.3	35
280	Controlled deposition of Au on (BiO) ₂ CO ₃ microspheres: the size and content of Au nanoparticles matter. Dalton Transactions, 2015, 44, 8805-8811.	1.6	34
281	Single atom (K/Na) doped graphitic carbon Nitride@MnO 2 as an efficient electrode Material for supercapacitor. Materials Letters, 2017, 202, 103-106.	1.3	34
282	Identifying the rate-determining step of the electrocatalytic hydrodechlorination reaction on palladium nanoparticles. Nanoscale, 2019, 11, 15892-15899.	2.8	34
283	Promoted reactants activation and charge separation leading to efficient photocatalytic activity on phosphate/potassium co-functionalized carbon nitride. Chinese Chemical Letters, 2019, 30, 875-880.	4.8	34
284	Grand Challenges for Catalytic Remediation in Environmental and Energy Applications Toward a Cleaner and Sustainable Future. Frontiers in Environmental Chemistry, 2020, 1 , .	0.7	34
285	Synthesis of mesoporous polymeric carbon nitride exhibiting enhanced and durable visible light photocatalytic performance. Science Bulletin, 2014, 59, 688-698.	1.7	33
286	Hierarchical copper/nickel-based manganese dioxide core-shell nanostructure for supercapacitor electrodes. Electrochimica Acta, 2016, 212, 671-677.	2.6	33
287	Hierarchical Nickel Cobaltate/Manganese Dioxide Coreâ€Shell Nanowire Arrays on Grapheneâ€Decorated Nickel Foam for Highâ€Performance Supercapacitors. ChemElectroChem, 2017, 4, 2414-2422.	1.7	33
288	BiOBr with oxygen vacancies capture OD black phosphorus quantum dots for high efficient photocatalytic ofloxacin degradation. Applied Surface Science, 2022, 593, 153422.	3.1	33

#	Article	IF	Citations
289	The Multiple Effects of Precursors on the Properties of Polymeric Carbon Nitride. International Journal of Photoenergy, 2013, 2013, 1-9.	1.4	32
290	Ternary Ag/AgCl-(BiO) 2 CO 3 composites as high-performance visible-light plasmonic photocatalysts. Catalysis Today, 2017, 284, 67-76.	2.2	32
291	SrTiO3/BiOI heterostructure: Interfacial charge separation, enhanced photocatalytic activity, and reaction mechanism. Chinese Journal of Catalysis, 2020, 41, 710-718.	6.9	32
292	Hierarchical Pd/MnO2 nanosheet array supported on Ni foam: An advanced electrode for electrocatalytic hydrodechlorination reaction. Applied Surface Science, 2020, 509, 145369.	3.1	32
293	Heterojunction interface of zinc oxide and zinc sulfide promoting reactive molecules activation and carrier separation toward efficient photocatalysis. Journal of Colloid and Interface Science, 2021, 588, 826-837.	5.0	32
294	Photochemical Transformation Pathways of Nitrates from Photocatalytic NOx Oxidation: Implications for Controlling Secondary Pollutants. Environmental Science and Technology Letters, 2021, 8, 873-877.	3.9	32
295	Enhanced Photocatalytic VOCs Mineralization via Special Ga-O-H Charge Transfer Channel in α-Ga ₂ O ₃ /MgAl-LDH Heterojunction. ACS ES&T Engineering, 2021, 1, 501-511.	3.7	32
296	Optimizing the Electronic Structure of BiOBr Nanosheets via Combined Ba Doping and Oxygen Vacancies for Promoted Photocatalysis. Journal of Physical Chemistry C, 2021, 125, 8597-8605.	1.5	31
297	Anisotropic ZnO nanostructures and their nanocomposites as an advanced platform for photocatalytic remediation. Journal of Hazardous Materials, 2021, 415, 125651.	6.5	31
298	Low-Charge-Carrier-Scattering Three-Dimensional $\hat{l}\pm$ -MnO ₂ \hat{l}^2 -MnO ₂ Networks for Ultra-High-Rate Asymmetrical Supercapacitors. ACS Applied Energy Materials, 2019, 2, 1051-1059.	2.5	30
299	Anion intercalated layered-double-hydroxide structure for efficient photocatalytic NO remove. Green Energy and Environment, 2019, 4, 270-277.	4.7	30
300	Insights for optimum cation defects in photocatalysis: A case study of hematite nanostructures. Applied Catalysis B: Environmental, 2020, 264, 118506.	10.8	30
301	Efficient photocatalytic toluene degradation over heterojunction of GQDs@BiOCl ultrathin nanosheets with selective benzoic acid activation. Journal of Hazardous Materials, 2021, 420, 126577.	6.5	30
302	Monodispersed plum candy-like MnO 2 nanosheets-decorated NiO nanostructures for supercapacitors. Ceramics International, 2016, 42, 7787-7792.	2.3	29
303	Electrocatalytic hydrodechlorination of 2,4-dichlorophenol over palladium nanoparticles: The critical role of hydroxyl group deprotonation. Applied Catalysis A: General, 2019, 583, 117146.	2.2	29
304	Novel CaCO3/g-C3N4 composites with enhanced charge separation and photocatalytic activity. Journal of Saudi Chemical Society, 2019, 23, 1109-1118.	2.4	29
305	Promote the activation and ring opening of intermediates for stable photocatalytic toluene degradation over Zn-Ti-LDH. Journal of Colloid and Interface Science, 2022, 606, 1435-1444.	5.0	29
306	MgAl layered double oxide: One powerful sweeper of emulsified water and acid for oil purification. Journal of Hazardous Materials, 2019, 367, 658-667.	6.5	28

#	Article	IF	CITATIONS
307	An atomic insight into BiOBr/La ₂ Ti ₂ O ₇ p–n heterojunctions: interfacial charge transfer pathway and photocatalysis mechanism. Catalysis Science and Technology, 2020, 10, 826-834.	2.1	28
308	Motivated surface reaction thermodynamics on the bismuth oxyhalides with lattice strain for enhanced photocatalytic NO oxidation. Applied Catalysis B: Environmental, 2021, 284, 119694.	10.8	28
309	Photocatalytic reaction mechanisms at a gas–solid interface for typical air pollutant decomposition. Journal of Materials Chemistry A, 2021, 9, 20184-20210.	5.2	28
310	Hydrothermal fabrication of N-doped (BiO)2CO3: Structural and morphological influence on the visible light photocatalytic activity. Applied Surface Science, 2014, 319, 256-264.	3.1	27
311	Adsorption Removal of Various Nitrophenols in Aqueous Solution by Aminopropyl-Modified Mesoporous MCM-48. Journal of Chemical & Engineering Data, 2018, 63, 3606-3614.	1.0	27
312	Inhibition of the toxic byproduct during photocatalytic NO oxidation via La doping in ZnO. Chinese Chemical Letters, 2020, 31, 751-754.	4.8	27
313	Fluorite-Structured Ferroelectric-/Antiferroelectric-Based Electrostatic Nanocapacitors for Energy Storage Applications. ACS Applied Energy Materials, 2020, 3, 6036-6055.	2.5	27
314	Recycling of spent alkaline Zn-Mn batteries directly: Combination with TiO2 to construct a novel Z-scheme photocatalytic system. Journal of Hazardous Materials, 2020, 400, 123236.	6.5	27
315	Lightâ€Induced Dynamic Stability of Oxygen Vacancies in BiSbO ₄ for Efficient Photocatalytic Formaldehyde Degradation. Energy and Environmental Materials, 2022, 5, 305-312.	7.3	27
316	Optimizing the metal-support interactions at the Pd-polymer carbon nitride Mott-Schottky heterojunction interface for an enhanced electrocatalytic hydrodechlorination reaction. Journal of Hazardous Materials, 2021, 411, 125119.	6. 5	27
317	Porous Mn-doped Co3O4 nanosheets: Gas sensing performance and interfacial mechanism investigation with In situ DRIFTS. Sensors and Actuators B: Chemical, 2022, 353, 131155.	4.0	27
318	Ammonia induced formation of N-doped (BiO)2CO3 hierarchical microspheres: the effect of hydrothermal temperature on the morphology and photocatalytic activity. CrystEngComm, 2013, 15, 10522.	1.3	26
319	Morphology and crystallinity-controlled synthesis of etched CoAl LDO/MnO2 hybrid nanoarrays towards high performance supercapacitors. Journal of Alloys and Compounds, 2019, 806, 917-925.	2.8	26
320	Synergetic effect of BiOCl/Bi12O17Cl2 and MoS2: in situ DRIFTS investigation on photocatalytic NO oxidation pathway. Rare Metals, 2019, 38, 437-445.	3.6	26
321	Composition-dependent micro-structure and photocatalytic performance of g-C3N4 quantum dots@SnS2 heterojunction. Nano Research, 2021, 14, 4188-4196.	5.8	26
322	The rapid synthesis of photocatalytic (BiO) ₂ CO ₃ single-crystal nanosheets via an eco-friendly approach. CrystEngComm, 2014, 16, 3592-3604.	1.3	25
323	Topochemical transformation of low-energy crystal facets to high-energy facets: a case from Bi ₂ O ₂ O ₃ {001} facets to β-Bi ₂ O ₃ {001} facets with improved photocatalytic oxidation of NO. CrystEngComm, 2015, 17, 6098-6102.	1.3	25
324	In situ growth of Au nanoparticles on 3D Bi ₂ O ₂ CO ₃ for surface plasmon enhanced visible light photocatalysis. New Journal of Chemistry, 2015, 39, 8446-8453.	1.4	25

#	Article	IF	CITATIONS
325	MnO _x –CeO ₂ @TiO ₂ core–shell composites for low temperature SCR of NO _x . New Journal of Chemistry, 2019, 43, 15161-15168.	1.4	25
326	Strong pyrrolic-N–Pd interactions boost the electrocatalytic hydrodechlorination reaction on palladium nanoparticles. Nanoscale, 2020, 12, 843-850.	2.8	25
327	Enhancement of Interfacial Charge Transportation Through Construction of 2D–2D p–n Heterojunctions in Hierarchical 3D CNFs/MoS ₂ /ZnIn ₂ S ₄ Composites to Enable Highâ€Efficiency Photocatalytic Hydrogen Evolution. Solar Rrl, 2021, 5, 2000722.	3.1	25
328	Substrate Engineering for CVD Growth of Single Crystal Graphene. Small Methods, 2021, 5, e2001213.	4.6	25
329	Nanomaterials for Environmental Applications. Journal of Nanomaterials, 2014, 2014, 1-4.	1.5	24
330	Facile synthesis of in situ phosphorus-doped g-C ₃ N ₄ with enhanced visible light photocatalytic property for NO purification. RSC Advances, 2016, 6, 88085-88089.	1.7	24
331	Enhanced plasmonic photocatalytic disinfection on noble-metal-free bismuth nanospheres/graphene nanocomposites. Catalysis Science and Technology, 2018, 8, 4600-4603.	2.1	24
332	Carbonate doped Bi2MoO6 hierarchical nanostructure with enhanced transformation of active radicals for efficient photocatalytic removal of NO. Journal of Colloid and Interface Science, 2019, 557, 816-824.	5.0	24
333	Oxygen activation of noble-metal-free g-C3N4/ \hat{l} ±-Ni(OH)2 to control the toxic byproduct of photocatalytic nitric oxide removal. Chemical Engineering Journal, 2020, 382, 123029.	6.6	24
334	Highly enhanced photocatalytic toluene degradation and in situ FT-IR investigation on designed Sn-doped BiOCl nanosheets. Applied Surface Science, 2022, 578, 152002.	3.1	24
335	Reheat treatment under vacuum induces pre-calcined \hat{l}_{\pm} -MnO2 with oxygen vacancy as efficient catalysts for toluene oxidation. Chemosphere, 2022, 289, 133081.	4.2	24
336	In situ DRIFT investigation on the photocatalytic NO oxidation mechanism with thermally exfoliated porous g-C ₃ N ₄ nanosheets. RSC Advances, 2017, 7, 19280-19287.	1.7	23
337	Mo-doped carbon nitride homojunction to promote oxygen activation for enhanced photocatalytic performance. Chemical Engineering Journal, 2020, 401, 126028.	6.6	23
338	Promote reactants activation and key intermediates formation for facilitated toluene photodecomposition via Ba active sites construction. Applied Catalysis B: Environmental, 2021, 297, 120489.	10.8	23
339	Non-noble metal plasmonic photocatalysis in semimetal bismuth films for photocatalytic NO oxidation. Physical Chemistry Chemical Physics, 2017, 19, 25610-25616.	1.3	22
340	Design and fabrication of hydrotalcite-like ternary NiMgAl layered double hydroxide nanosheets as battery-type electrodes for high-performance supercapacitors. RSC Advances, 2019, 9, 9604-9612.	1.7	22
341	Surface Hydrogen Atoms Promote Oxygen Activation for Solar Light-Driven NO Oxidization over Monolithic α-Ni(OH) ₂ /Ni Foam. Environmental Science & Technology, 2020, 54, 16221-16230.	4.6	22
342	Controlled hydrogenation into defective interlayer bismuth oxychloride via vacancy engineering. Communications Chemistry, 2020, 3, .	2.0	22

#	Article	IF	CITATIONS
343	Dual Functions of O-Atoms in the g-C ₃ N ₄ /BO _{0.2} N _{0.8} Interface: Oriented Charge Flow In-Plane and Separation within the Interface To Collectively Promote Photocatalytic Molecular Oxygen Activation. ACS Applied Materials & Interfaces, 2020, 12, 34432-34440.	4.0	22
344	Highly efficient photocatalytic NO removal and in situ DRIFTS investigation on SrSn(OH)6. Chinese Chemical Letters, 2022, 33, 1259-1262.	4.8	22
345	Activation and characterization of environmental catalysts in plasma-catalysis: Status and challenges. Journal of Hazardous Materials, 2022, 427, 128150.	6.5	22
346	A Cost-Effective Solid-State Approach to Synthesize g-C ₃ N ₄ Coated TiO ₂ Nanocomposites with Enhanced Visible Light Photocatalytic Activity. International Journal of Photoenergy, 2013, 2013, 1-7.	1.4	21
347	Growth of g-C ₃ N ₄ Layer on Commercial TiO ₂ for Enhanced Visible Light Photocatalytic Activity. Journal of Nanomaterials, 2014, 2014, 1-8.	1.5	21
348	Simultaneous Pd2+ doping and Pd metal deposition on (BiO)2CO3 microspheres for enhanced and stable visible light photocatalysis. Applied Catalysis A: General, 2016, 510, 161-170.	2.2	21
349	Thermocatalytic syntheses of highly defective hybrid nano-catalysts for photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 23766-23775.	5.2	21
350	Highly Efficient MnO ₂ /AlOOH Composite Catalyst for Indoor Low-Concentration Formaldehyde Removal at Room Temperature. Inorganic Chemistry, 2020, 59, 7335-7343.	1.9	21
351	Amino-mediated anchoring of FAPbBr3 perovskite quantum dots on silica spheres for efficient visible light photocatalytic NO removal. Chemical Engineering Journal, 2021, 406, 126740.	6.6	21
352	Tuning the Active Sites of Atomically Thin Defective Bi ₁₂ O ₁₇ Cl ₂ via Incorporation of Subnanometer Clusters. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9216-9223.	4.0	21
353	Identification of deactivation-resistant origin of In(OH)3 for efficient and durable photodegradation of benzene, toluene and their mixtures. Journal of Hazardous Materials, 2021, 416, 126208.	6.5	21
354	Thermocatalytic oxidation of gaseous benzene by a titanium dioxide supported platinum catalyst. Chemical Engineering Journal, 2022, 428, 131090.	6.6	21
355	Sulfur-doping synchronously ameliorating band energy structure and charge separation achieving decent visible-light photocatalysis of Bi ₂ O ₂ CO ₃ . RSC Advances, 2016, 6, 94361-94364.	1.7	20
356	Controlling the secondary pollutant on B-doped g-C ₃ N ₄ during photocatalytic NO removal: a combined DRIFTS and DFT investigation. Catalysis Science and Technology, 2019, 9, 4531-4537.	2.1	20
357	High-surface energy enables efficient and stable photocatalytic toluene degradation <i>via </i> the suppression of intermediate byproducts. Catalysis Science and Technology, 2019, 9, 2952-2959.	2.1	20
358	Highly durable isotypic heterojunction generated by covalent cross-linking with organic linkers for improving visible-light-driven photocatalytic performance. Applied Catalysis B: Environmental, 2020, 260, 118182.	10.8	20
359	Mo Promotes Interfacial Interaction and Induces Oxygen Vacancies in 2D/2D of Mo-g-C ₃ N ₄ and Bi ₂ O ₂ CO ₃ Photocatalyst for Enhanced NO Oxidation. Industrial & Description of Enhanced NO Oxidation.	1.8	20
360	Perovskite Nanocrystalsâ€Based Heterostructures: Synthesis Strategies, Interfacial Effects, and Photocatalytic Applications. Solar Rrl, 2021, 5, 2000419.	3.1	20

#	Article	IF	Citations
361	Photocatalytic destruction of volatile aromatic compounds by platinized titanium dioxide in relation to the relative effect of the number of methyl groups on the benzene ring. Science of the Total Environment, 2022, 822, 153605.	3.9	20
362	Unveiling the collective effects of moisture and oxygen on the photocatalytic degradation of m-Xylene using a titanium dioxide supported platinum catalyst. Chemical Engineering Journal, 2022, 439, 135747.	6.6	20
363	(NH ₄) ₂ SO ₄ -assisted polycondensation of dicyandiamide for porous g-C ₃ N ₄ with enhanced photocatalytic NO removal. RSC Advances, 2016, 6, 96334-96338.	1.7	19
364	Quantifying the activation energies of ROS-induced NOx conversion: Suppressed toxic intermediates generation and clarified reaction mechanism. Chemical Engineering Journal, 2019, 375, 122026.	6.6	19
365	The structural differences of perovskite ATiO3 (AÂ=ÂCa, Sr) dictate the photocatalytic VOCs mineralization efficiency. Chemical Engineering Journal, 2021, 425, 130613.	6.6	19
366	CsPbBr ₃ Perovskite Nanocrystal: A Robust Photocatalyst for Realizing NO Abatement. ACS ES&T Engineering, 2021, 1, 1021-1027.	3.7	18
367	Optimizing the Gas–Solid Photocatalytic Reactions for Air Purification. ACS ES&T Engineering, 2022, 2, 1103-1115.	3.7	18
368	Synthesis of flower-like, pinon-like and faceted nanoplates (BiO)2CO3 micro/nanostructures with morphology-dependent photocatalytic activity. Materials Chemistry and Physics, 2013, 142, 381-386.	2.0	17
369	Insights into peroxymonosulfate activation under visible Light: Sc2O3@C3N4 mediated photoexcited electron transfer. Chemical Engineering Journal, 2022, 435, 134836.	6.6	17
370	Design and mechanism of photocatalytic oxidation for the removal of air pollutants: a review. Environmental Chemistry Letters, 2022, 20, 2687-2708.	8.3	17
371	Chemical Discrimination of Benzene Series and Molecular Recognition of the Sensing Process over Ti-Doped Co ₃ O ₄ . ACS Sensors, 2022, 7, 1757-1765.	4.0	17
372	Defective Layered Double Hydroxide Nanosheet Boosts Electrocatalytic Hydrodechlorination Reaction on Supported Palladium Nanoparticles. ACS ES&T Water, 2022, 2, 1451-1460.	2.3	17
373	Construction of advanced 3D Co3S4@PPy nanowire anchored on nickel foam for high-performance electrochemical energy storage. Electrochimica Acta, 2020, 334, 135635.	2.6	16
374	Coupling Electrocatalytic Nitric Oxide Oxidation over Carbon Cloth with Hydrogen Evolution Reaction for Nitrate Synthesis. Angewandte Chemie, 2021, 133, 24810-24816.	1.6	16
375	Single-metal catalytic sites via high-throughput mechanochemistry enable selective and efficient CO2 photoreduction. Applied Catalysis B: Environmental, 2022, 316, 121661.	10.8	16
376	Diverse birnessite MnO 2 nanosheets-based nanocomposites for supercapacitors. Materials Letters, 2016, 171, 319-322.	1.3	15
377	Light-induced secondary hydroxyl defects in Sr1-xSn(OH)6 enable sustained and efficient photocatalytic toluene mineralization. Chemical Engineering Journal, 2022, 427, 131764.	6.6	15
378	Facile Fabrication of NiCo ₂ O ₄ @g-C ₃ N ₄ (C) Hybrids for High-Performance Supercapacitors. Journal of Nanoscience and Nanotechnology, 2019, 19, 73-80.	0.9	14

#	Article	IF	Citations
379	B doped Bi2O2CO3 hierarchical microspheres: Enhanced photocatalytic performance and reaction mechanism for NO removal. Catalysis Today, 2021, 380, 230-236.	2.2	14
380	The mechanisms of interfacial charge transfer and photocatalysis reaction over Cs3Bi2Cl9 QD/(BiO)2CO3 heterojunction. Chemical Engineering Journal, 2022, 430, 132974.	6.6	14
381	Synergistic degradation of NO and C7H8 for inhibition of O3 generation. Applied Catalysis B: Environmental, 2022, 312, 121423.	10.8	14
382	OH/Na co-functionalized carbon nitride: directional charge transfer and enhanced photocatalytic oxidation ability. Catalysis Science and Technology, 2020, 10, 529-535.	2.1	13
383	Crystal-structure dependent reaction pathways in photocatalytic formaldehyde mineralization on BiPO4. Journal of Hazardous Materials, 2021, 420, 126633.	6.5	13
384	Thermocatalytic oxidation of a three-component mixture of volatile organic compounds by a titanium dioxide-supported platinum catalyst. Journal of Cleaner Production, 2021, 325, 129279.	4.6	13
385	Self-doped Br in Bi5O7Br ultrathin nanotubes: Efficient photocatalytic NO purification and mechanism investigation. Chinese Chemical Letters, 2022, 33, 3161-3166.	4.8	13
386	A new strategy for plasma-catalytic reduction of NO to N2 on the surface of modified Bi2MoO6. Chemical Engineering Journal, 2022, 440, 135754.	6.6	13
387	Substitution of B-site in BaSb2O6 perovskite for surface lattice oxygen activation and boosted photocatalytic toluene mineralization. Journal of Hazardous Materials, 2022, 436, 129089.	6.5	13
388	Efficient NO removal and photocatalysis mechanism over Bi-metal@Bi2O2[BO2(OH)] with oxygen vacancies. Journal of Hazardous Materials, 2022, 436, 129271.	6.5	13
389	Enhanced Visible Light Photocatalytic Activity of Br-Doped Bismuth Oxide Formate Nanosheets. Molecules, 2015, 20, 19189-19202.	1.7	12
390	An ion-exchange strategy for I-doped BiOCOOH nanoplates with enhanced visible light photocatalytic NOx removal. Pure and Applied Chemistry, 2018, 90, 353-361.	0.9	12
391	Doping and facet effects synergistically mediated interfacial reaction mechanism and selectivity in photocatalytic NO abatement. Journal of Colloid and Interface Science, 2021, 604, 624-634.	5.0	12
392	Photocatalytic reaction mechanisms at the gas–solid interface for environmental and energy applications. Catalysis Science and Technology, 2021, 11, 7807-7839.	2.1	12
393	Rational Design of LDH/Zn ₂ SnO ₄ Heterostructures for Efficient Mineralization of Toluene Through Boosted Interfacial Charge Separation. Energy and Environmental Materials, 2023, 6, .	7.3	12
394	Low-temperature oxidative removal of gaseous formaldehyde by an eggshell waste supported silver-manganese dioxide bimetallic catalyst with ultralow noble metal content. Journal of Hazardous Materials, 2022, 434, 128857.	6.5	12
395	Lower treating temperature leading to higher air purification activity. Chemical Engineering Journal, 2017, 314, 640-649.	6.6	11
396	Fabrication of mesoporous gold networks@MnO2 for high-performance supercapacitors. Gold Bulletin, 2017, 50, 61-68.	1.1	10

#	Article	IF	CITATIONS
397	Promotion mechanism of $\hat{a}\in \text{``OH group intercalation for NOx purification on BiOI photocatalyst.}$ Nanoscale, 2021, 13, 20601-20608.	2.8	10
398	Dual-quantum-dots heterostructure with confined active interface for promoted photocatalytic NO abatement. Journal of Hazardous Materials, 2022, 438, 129463.	6.5	10
399	Controllable synthesis of a 3D ZnS@MoO ₃ heterojunction <i>via</i> a hydrothermal method towards efficient NO purification under visible light. CrystEngComm, 2020, 22, 257-266.	1.3	9
400	Boosting free radical type photocatalysis over Pd/Fe-MOFs by coordination structure engineering. Catalysis Science and Technology, 2021, 11, 5543-5552.	2.1	9
401	Earthâ€Abundant CaCO ₃ â€Based Photocatalyst for Enhanced ROS Production, Toxic Byâ€Product Suppression, and Efficient NO Removal. Energy and Environmental Materials, 2022, 5, 928-934.	7.3	9
402	Crystal-Structure-Dependent Photocatalytic Redox Activity and Reaction Pathways over Ga ₂ O ₃ Polymorphs. ACS Applied Materials & Discrete Substitution of the Substitu	4.0	9
403	The spatially separated active sites for holes and electrons boost the radicals generation for toluene degradation. Journal of Hazardous Materials, 2022, 437, 129329.	6.5	9
404	Synthesis and Application of One-Dimensional La(OH)3Nanostructures: An Overview. Journal of Chemistry, 2014, 2014, 1-9.	0.9	8
405	Morphological evolution process of δ-MnO2 from 2-D to 1-D without phase transition. CrystEngComm, 2019, 21, 4593-4598.	1.3	8
406	Enhanced Reactant Activation and Transformation for Efficient Photocatalytic Acetone Degradation on SnO ₂ via Hf Doping. Advanced Sustainable Systems, 2021, 5, 2100115.	2.7	8
407	Efficient visible light photocatalytic NO abatement over SrSn(OH)6 nanowires loaded with Ag/Ag2O cocatalyst. Environmental Research, 2021, 201, 111521.	3.7	8
408	Tunable microstructure of \hat{l} ±-Ni(OH)2 for highly-efficient surface adsorbates activation to promote catalytic NO oxidation. Chemical Engineering Journal, 2021, 425, 130663.	6.6	8
409	Advances in Regulation Strategies for Electronic Structure and Performance of Two-Dimensional Photocatalytic Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	8
410	Unraveling the Unique Role of Methyl Position on the Ring-Opening Barrier in Photocatalytic Decomposition of Xylene Isomers. ACS Catalysis, 2022, 12, 8363-8371.	5.5	8
411	Editorial: Photocatalysis for Environmental Applications. Frontiers in Chemistry, 2019, 7, 303.	1.8	7
412	Alkali/alkaline-earth metal intercalated g-C3N4 induced charge redistribution and optimized photocatalysis: status and challenges. JPhys Energy, 2021, 3, 032008.	2.3	7
413	Tuning the Morphological Structure and Photocatalytic Activity of Nitrogen-Doped (BiO) ₂ CO ₃ by the Hydrothermal Temperature. Journal of Nanomaterials, 2014, 2014, 1-10.	1.5	6
414	Rapid oxidation-etching synthesis of low-crystalline δ-MnO2 tubular nanostructures under ambient with high capacitance. Journal of Colloid and Interface Science, 2019, 557, 168-173.	5.0	6

#	Article	IF	Citations
415	Engineering the surface delocalized electrons facilitates the ring-opening for deep toluene oxidation. Journal of Catalysis, 2022, 413, 417-424.	3.1	6
416	Bismuth metal and semiconductor-based photocatalysts: structure tuning, activity enhancement, and reaction mechanism. Interface Science and Technology, 2020, 31, 349-377.	1.6	3
417	Tailoring unique neural-network-type carbon nanofibers inserted in CoP/NC polyhedra for robust hydrogen evolution reaction. Nanoscale, 2021, 13, 14705-14712.	2.8	3
418	Two Dimensional Photocatalytic Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2021, .	2.2	3
419	Compulsive malposition of birnessite slab in 2D-Parallel birnessite on \hat{l}^2 -MnO2 networks for enhanced pseudocapacitance performances. Nano Materials Science, 2021, 3, 404-411.	3.9	3
420	NO Photo-oxidation and In-situ DRIFTS Studies on N-doped Bi2O2CO3/CdSe Quantum Dot Composite. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2019, 34, 425.	0.6	3
421	石墨型C ₃ N ₄ åæ¨æ³¡æ²«é™¶ç"·è¡¨é¢çš"原ä½èŸè½½åŠå•è§å.	.0∕ 4å,¬åŒ	[2 空溔ª
422	Performance and mechanism of visible-light-induced plasmonic photocatalytic purification of NO with Ag/AgX. Chinese Science Bulletin, 2016, 61, 3482-3489.	0.4	2
423	<italic>In situ</italic> FT-IR investigation on visible light photocatalytic NO oxidation mechanism with (BiO) ₂ CO ₃ and N-doped (BiO) ₂ CO ₃ hiararchical microspheres. Chinese Science Bulletin. 2017. 62. 2534-2543.	0.4	2
424	Insights into Dynamic Surface Bromide Sites in Bi ₄ O ₅ Br ₂ for Sustainable N ₂ Photofixation. Angewandte Chemie, 0, , .	1.6	2
425	Solar Energy Utilization and Photo(electro)catalysis for Sustainable Environment. ACS ES&T Engineering, 2022, 2, 940-941.	3.7	2
426	Influence of Engineering Measurements on the Desorption and Production of CBM Wells by Eclipse. Advanced Materials Research, 0, 868, 700-704.	0.3	1
427	Materials Chemistry for Sustainability and Energy. Journal of Chemistry, 2014, 2014, 1-3.	0.9	1
428	Photocatalytic Clean Energy Conversion Boosted by Vacancy-rich 2D/2D Heterostructure. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	1
429	Editorial: Photocatalysts for Air Purification: Design, Synthesis, and Mechanism Investigations. Frontiers in Chemistry, 2022, 10, 870550.	1.8	1
430	The Crystal Plane is not the Key Factor for CO ₂ â€ŧoâ€Methane Electrosynthesis on Reconstructed Cu ₂ O Microparticles. Angewandte Chemie, 2022, 134, .	1.6	1
431	Mangesium sulfate microparticles with superior performance in water separation from a water-in-oil emulsion. Chinese Science Bulletin, 2021, , .	0.4	O
432	Enhanced visible light photocatalytic performance and reaction mechanism on Ag/AgCl-LaCO ₃ OH nanorods composite. Chinese Science Bulletin, 2019, 64, 1485-1494.	0.4	0

Fan Dong

#	Article	IF	CITATIONS
433	High-Performance Single-Atom Implanted Metal-Organic Framework/MnO ₂ for NO _{<i>x</i>} Oxidation in Plasma. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	0
434	BiOBr-BN Photocatalysts for Promoting Photocatalytic NO Oxidation and Inhibiting Toxic By-products. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2020, , 24.	0.6	0
435	Green Production of Solar Fuels Using Formaldehyde Pollutant as a Carbon Feedstock Achieving Conversion of Waste into Energy. ACS Sustainable Chemistry and Engineering, 2022, 10, 31-36.	3.2	0