
Xiaobin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8565286/publications.pdf Version: 2024-02-01

XIAORINI

#	Article	IF	CITATIONS
1	Enhancement of chitin suspension hydrolysis by a combination of ultrasound and chitinase. Carbohydrate Polymers, 2020, 231, 115669.	5.1	35
2	Ultrasound for pectinase modification: an investigation into potential mechanisms. Journal of the Science of Food and Agriculture, 2020, 100, 4636-4642.	1.7	12
3	Applications of power ultrasound in oriented modification and degradation of pectin: A review. Journal of Food Engineering, 2018, 234, 98-107.	2.7	90
4	Lysozyme immobilization on the calcium alginate film under sonication: Development of an antimicrobial film. Food Hydrocolloids, 2018, 83, 1-8.	5.6	42
5	Effects of ultrasound pretreatment on the enzymolysis of pectin: Kinetic study, structural characteristics and anti-cancer activity of the hydrolysates. Food Hydrocolloids, 2018, 79, 90-99.	5.6	55
6	Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems. International Journal of Biological Macromolecules, 2018, 119, 453-461.	3.6	118
7	Effect of chitosan microcapsules loaded with nisin on the preservation of small yellow croaker. Food Control, 2017, 79, 317-324.	2.8	51
8	Acoustic cavitation assisted extraction of pectin from waste grapefruit peels: A green two-stage approach and its general mechanism. Food Research International, 2017, 102, 101-110.	2.9	87
9	Ultrasound assisted enzymatic hydrolysis of starch catalyzed by glucoamylase: Investigation on starch properties and degradation kinetics. Carbohydrate Polymers, 2017, 175, 47-54.	5.1	84
10	Characteristics of pectinase treated with ultrasound both during and after the immobilization process. Ultrasonics Sonochemistry, 2017, 36, 1-10.	3.8	35
11	Synergistic Effect and Mechanisms of Combining Ultrasound and Pectinase on Pectin Hydrolysis. Food and Bioprocess Technology, 2016, 9, 1249-1257.	2.6	53
12	Degradation kinetics and structural characteristics of pectin under simultaneous sonochemical-enzymatic functions. Carbohydrate Polymers, 2016, 154, 176-185.	5.1	46
13	Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocolloids, 2016, 61, 730-739.	5.6	392
14	Effects of Ultrasound on Spoilage Microorganisms, Quality, and Antioxidant Capacity of Postharvest Cherry Tomatoes. Journal of Food Science, 2015, 80, C2117-26.	1.5	72
15	Properties and structures of commercial polygalacturonase with ultrasound treatment: role of ultrasound in enzyme activation. RSC Advances, 2015, 5, 107591-107600.	1.7	54
16	Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method. Food Chemistry, 2015, 178, 106-114.	4.2	274