
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8565250/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward accurate evaluation of bulk hardness from nanoindentation testing at low indent depths. Materials and Design, 2022, 213, 110317.	3.3	24
2	Radiation induced amorphization of carbides in additively manufactured and conventional ferritic-martensitic steels: In-situ experiments on extraction replicas. Journal of Nuclear Materials, 2022, 563, 153646.	1.3	6
3	Phase instabilities in austenitic steels during particle bombardment at high and low dose rates. Materials and Design, 2022, 217, 110588.	3.3	6
4	Properties and microstructure evolution of silicon nitride and zirconium nitride following Ni ion irradiation. Journal of Nuclear Materials, 2022, 563, 153643.	1.3	5
5	Effect of heavy ion irradiation dose rate and temperature on α′ precipitation in high purity Fe-18%Cr alloy. Acta Materialia, 2022, 231, 117888.	3.8	9
6	Irradiation damage concurrent challenges with RAFM and ODS steels for fusion reactor first-wall/blanket: a review. JPhys Energy, 2022, 4, 034003.	2.3	9
7	The effect of helium on cavity swelling in dual-ion irradiated Fe and Fe-10Cr ferritic alloys. Journal of Nuclear Materials, 2022, 569, 153907.	1.3	6
8	An exploratory study on helium mobility in amorphous and crystallized bulk metallic glasses. Journal of Nuclear Materials, 2021, 543, 152617.	1.3	2
9	Interdiffusion of Elements During Ultrasonic Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1142-1157.	1.1	11
10	Development of the materials analysis and particle probe for Proto-MPEX. Review of Scientific Instruments, 2021, 92, 045108.	0.6	2
11	Temperature-dependent cavity swelling in dual-ion irradiated Fe and Fe-Cr ferritic alloys. Acta Materialia, 2021, 207, 116660.	3.8	41
12	Effect of sink strength on coherency loss of precipitates in dilute Cu-base alloys during in situ ion irradiation. Acta Materialia, 2021, 210, 116812.	3.8	6
13	Characterization of high thermal conductivity fuel surrogates before and after ion irradiation. Journal of Nuclear Materials, 2021, 552, 153027.	1.3	5
14	Tailoring microstructure in sintered Cu-Cr-Nb-Zr alloys for fusion components. Journal of Nuclear Materials, 2021, 551, 152956.	1.3	8
15	On the use of SRIM for calculating vacancy production: Quick calculation and full-cascade options. Nuclear Instruments & Methods in Physics Research B, 2021, 503, 11-29.	0.6	70
16	RF sheath induced sputtering on Proto-MPEX. I. Sheath equivalent dielectric layer for modeling the RF sheath. Physics of Plasmas, 2021, 28, .	0.7	8
17	Perspectives on multiscale modelling and experiments to accelerate materials development for fusion. Journal of Nuclear Materials, 2021, 554, 153113.	1.3	37
18	Helium causing disappearance of a/2<111> dislocation loops in binary Fe-Cr ferritic alloys. Journal of Nuclear Materials, 2021, 556, 153213.	1.3	2

#	Article	IF	CITATIONS
19	Reconfiguration of an Electrothermal-Arc Plasma Source for In Situ PMI Studies. Fusion Science and Technology, 2021, 77, 921-927.	0.6	2
20	RF sheath induced sputtering on Proto-MPEX part 2: Impurity transport modeling and experimental comparison. Physics of Plasmas, 2021, 28, 103508.	0.7	6
21	Irradiation hardening and ductility loss of Eurofer97 steel variants after neutron irradiation to ITER-TBM relevant conditions. Fusion Engineering and Design, 2021, 173, 112935.	1.0	5
22	Investigation of the mechanical and microstructural evolution of a Cu based bulk metallic glass during ion irradiation. Intermetallics, 2020, 116, 106655.	1.8	13
23	Neutron irradiation-induced microstructure damage in ultra-high temperature ceramic TiC. Acta Materialia, 2020, 186, 1-10.	3.8	30
24	Modern nanostructured ferritic alloys: A compelling and viable choice for sodium fast reactor fuel cladding applications. Journal of Nuclear Materials, 2020, 529, 151928.	1.3	21
25	Effects of carbonitrides and carbides on microstructure and properties of castable nanostructured alloys. Journal of Nuclear Materials, 2020, 540, 152376.	1.3	21
26	Effects of irradiation spectrum on the microstructural and mechanical properties of bulk metallic glasses. Journal of Nuclear Materials, 2020, 533, 152084.	1.3	4
27	Observed volatilization behavior of silicon carbide in flowing hydrogen above 2000 K. Journal of the American Ceramic Society, 2020, 103, 7159-7171.	1.9	2
28	The effects of neutron and ionizing irradiation on the aqueous corrosion of SiC. Journal of Nuclear Materials, 2020, 536, 152190.	1.3	17
29	The effect of Zr on precipitation in oxide dispersion strengthened FeCrAl alloys. Journal of Nuclear Materials, 2020, 533, 152105.	1.3	21
30	Structural damage and phase stability of Al0.3CoCrFeNi high entropy alloy under high temperature ion irradiation. Acta Materialia, 2020, 188, 1-15.	3.8	83
31	Contrasting roles of Laves_Cr2Nb precipitates on the creep properties of novel CuCrNbZr alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 779, 139110.	2.6	16
32	Effects of temperature on helium bubble behaviour in Fe–9Cr alloy. Journal of Nuclear Materials, 2020, 532, 152045.	1.3	20
33	Experimental Studies on Primary Damage Formation. , 2020, , 74-90.		3
34	Toward the Use of Ion Irradiation to Predict Reactor Irradiation Effects. , 2020, , 468-484.		11
35	Radiation-Induced Effects on Microstructure. , 2020, , 91-129.		17

#	Article	IF	CITATIONS
37	Cavity Swelling in Irradiated Materials. , 2020, , 406-455.		10
38	Evolution of the microstructural and mechanical properties of BAM-11 bulk metallic glass during ion irradiation and annealing. Journal of Nuclear Materials, 2019, 523, 299-309.	1.3	29
39	Neutron irradiation response of a Co-free high entropy alloy. Journal of Nuclear Materials, 2019, 527, 151838.	1.3	64
40	Investigation of the thermal and neutron irradiation response of BAM-11 bulk metallic glass. Journal of Nuclear Materials, 2019, 526, 151771.	1.3	30
41	Radiation and Thermomechanical Degradation Effects in Reactor Structural Alloys. , 2019, , 163-210.		5
42	Stability of a model Fe-14Cr nanostructured ferritic alloy after long-term thermal creep. Scripta Materialia, 2019, 170, 134-139.	2.6	11
43	Characterization of the helicon plasma flux to the target of Proto-MPEX. Fusion Engineering and Design, 2019, 138, 282-288.	1.0	7
44	Microstructural evaluation of a Fe-12Cr nanostructured ferritic alloy designed for impurity sequestration. Journal of Nuclear Materials, 2019, 522, 111-122.	1.3	9
45	Ionizing vs collisional radiation damage in materials: Separated, competing, and synergistic effects in Ti3SiC2. Acta Materialia, 2019, 173, 195-205.	3.8	10
46	First principle study of magnetism and vacancy energetics in a near equimolar NiFeMnCr high entropy alloy. Journal of Applied Physics, 2019, 125, .	1.1	40
47	Entropy modeling on serrated flows in carburized steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 753, 135-145.	2.6	20
48	Multiscale investigations of nanoprecipitate nucleation, growth, and coarsening in annealed low-Cr oxide dispersion strengthened FeCrAl powder. Acta Materialia, 2019, 166, 1-17.	3.8	46
49	Towards a greater understanding of serrated flows in an Al-containing high-entropy-based alloy. International Journal of Plasticity, 2019, 115, 71-92.	4.1	89
50	Nano-scale microstructure damage by neutron irradiations in a novel Boron-11 enriched TiB2 ultra-high temperature ceramic. Acta Materialia, 2019, 165, 26-39.	3.8	28
51	Post irradiation examination of nanoprecipitate stability and α′ precipitation in an oxide dispersion strengthened Fe-12Cr-5Al alloy. Scripta Materialia, 2019, 162, 94-98.	2.6	19
52	Roadmap for the application of ion beam technologies to the challenges of nuclear energy technologies. Nuclear Instruments & Methods in Physics Research B, 2019, 441, 41-45.	0.6	17
53	Comparison of irradiation tolerance of two MAX phases-Ti4AlN3 and Ti2AlN. Journal of Nuclear Materials, 2019, 513, 120-128.	1.3	7
54	Helium induced microstructure damage, nano-scale grain formation and helium retention behaviour of ZrC. Acta Materialia, 2019, 163, 14-27.	3.8	31

#	Article	IF	CITATIONS
55	Improving atomic displacement and replacement calculations with physically realistic damage models. Nature Communications, 2018, 9, 1084.	5.8	241
56	Opportunities and limitations for ion beams in radiation effects studies: Bridging critical gaps between charged particle and neutron irradiations. Scripta Materialia, 2018, 143, 154-160.	2.6	229
57	Effects of temperature on the irradiation responses of Al0.1CoCrFeNi high entropy alloy. Scripta Materialia, 2018, 144, 31-35.	2.6	103
58	Modeling of dislocation channel width evolution in irradiated metals. Journal of Nuclear Materials, 2018, 499, 47-64.	1.3	12
59	Complexity modeling and analysis of chaos and other fluctuating phenomena. Chaos, Solitons and Fractals, 2018, 116, 166-175.	2.5	18
60	A set of MATLAB routines and associated files for prediction of radiation-enhanced diffusion in ion irradiated materials. Data in Brief, 2018, 21, 83-85.	0.5	3
61	Primary radiation damage: A review of current understanding and models. Journal of Nuclear Materials, 2018, 512, 450-479.	1.3	358
62	Influence of mechanical alloying and extrusion conditions on the microstructure and tensile properties of Low-Cr ODS FeCrAl alloys. Journal of Nuclear Materials, 2018, 512, 227-238.	1.3	37
63	Irradiation responses and defect behavior of single-phase concentrated solid solution alloys. Journal of Materials Research, 2018, 33, 3077-3091.	1.2	47
64	Thermal diffusion of mixed valence Ce in 6Li loaded silicate glass for neutron imaging. Journal of Non-Crystalline Solids, 2018, 498, 145-152.	1.5	3
65	Modeling the impact of radiation-enhanced diffusion on implanted ion profiles. Journal of Nuclear Materials, 2018, 509, 168-180.	1.3	36
66	Production and Hot Hydrogen Testing of Subscale Molybdenum Cermets for Nuclear Thermal Propulsion. , 2018, , .		2
67	Development of novel Cu-Cr-Nb-Zr alloys with the aid of computational thermodynamics. Materials and Design, 2018, 156, 370-380.	3.3	40
68	High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nature Communications, 2017, 8, 15634.	5.8	241
69	Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications. Nuclear Fusion, 2017, 57, 092005.	1.6	177
70	Towards a programme of testing and qualification for structural and plasma-facing materials in â€̃fusion neutron' environments. Nuclear Fusion, 2017, 57, 092013.	1.6	36
71	Introduction to the special issue on the technical status of materials for a fusion reactor. Nuclear Fusion, 2017, 57, 092001.	1.6	36
72	Materials testing facilities and programmes for fission and ion implantation damage. Nuclear Fusion, 2017. 57. 092011.	1.6	15

#	Article	IF	CITATIONS
73	Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications. Nuclear Fusion, 2017, 57, 092004.	1.6	91
74	Helium sequestration at nanoparticle-matrix interfaces in heliumÂ+Âheavy ion irradiated nanostructured ferritic alloys. Journal of Nuclear Materials, 2017, 483, 21-34.	1.3	42
75	Phase stability, swelling, microstructure and strength of Ti3SiC2-TiC ceramics after low dose neutron irradiation. Journal of Nuclear Materials, 2017, 483, 44-53.	1.3	31
76	Advanced irradiation-resistant materials for Generation IV nuclear reactors. , 2017, , 569-594.		11
77	Applicability of copper alloys for DEMO high heat flux components. Physica Scripta, 2016, T167, 014004.	1.2	37
78	Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Materialia, 2016, 113, 230-244.	3.8	450
79	Motivation for utilizing new high-performance advanced materials in nuclear energy systems. Current Opinion in Solid State and Materials Science, 2016, 20, 401-410.	5.6	64
80	Anisotropic swelling and microcracking of neutron irradiated Ti3AlC2–Ti5Al2C3 materials. Scripta Materialia, 2016, 114, 74-78.	2.6	43
81	High temperature ion irradiation effects in MAX phase ceramics. Acta Materialia, 2016, 105, 130-146.	3.8	102
82	Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments. Scientific Reports, 2015, 5, 7801.	1.6	82
83	Fusion materials science and technology research opportunities now and during the ITER era. Fusion Engineering and Design, 2014, 89, 1579-1585.	1.0	40
84	Accident tolerant fuels for LWRs: A perspective. Journal of Nuclear Materials, 2014, 448, 374-379.	1.3	754
85	Advanced oxidation-resistant iron-based alloys for LWR fuel cladding. Journal of Nuclear Materials, 2014, 448, 420-435.	1.3	403
86	Materials R&D for a timely DEMO: Key findings and recommendations of the EU Roadmap Materials Assessment Group. Fusion Engineering and Design, 2014, 89, 1586-1594.	1.0	120
87	Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment. Journal of Nuclear Materials, 2014, 455, 277-291.	1.3	210
88	Designing Radiation Resistance in Materials for Fusion Energy. Annual Review of Materials Research, 2014, 44, 241-267.	4.3	522
89	Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications. Journal of Nuclear Materials, 2014, 449, 277-289.	1.3	26
90	Effects of ion irradiation on Zr52.5Cu17.9Ni14.6Al10Ti5 (BAM-11) bulk metallic glass. Intermetallics, 2014. 53. 62-66.	1.8	35

#	Article	IF	CITATIONS
91	Multimodal options for materials research to advance the basis for fusion energy in the ITER era. Nuclear Fusion, 2013, 53, 104024.	1.6	75
92	Evaluation of irradiation facility options for fusion materials research and development. Fusion Engineering and Design, 2013, 88, 472-482.	1.0	91
93	Materials challenges in nuclear energy. Acta Materialia, 2013, 61, 735-758.	3.8	1,711
94	Challenges in Developing Materials for Fusion Technology - Past, Present and Future. Fusion Science and Technology, 2013, 64, 65-75.	0.6	36
95	Opportunities and Challenges for Materials Innovation in Nuclear Energy. EPJ Web of Conferences, 2013, 51, 01001.	0.1	2
96	Radiation-Induced Effects on Microstructure**Prepared for the Oak Ridge National Laboratory under Contract No. DE-AC05-000R22725. , 2012, , 65-98.		110
97	Effect of H and He irradiation on cavity formation and blistering in ceramics. Nuclear Instruments & Methods in Physics Research B, 2012, 286, 4-19.	0.6	99
98	Physical and Mechanical Properties of Copper and Copper Alloys. , 2012, , 667-690.		126
99	Specification of CuCrZr alloy properties after various thermo-mechanical treatments and design allowables including neutron irradiation effects. Journal of Nuclear Materials, 2011, 417, 904-907.	1.3	79
100	Prospects for accelerated development of high performance structural materials. Journal of Nuclear Materials, 2011, 417, 2-8.	1.3	89
101	Influence of thermal and radiation effects on microstructural and mechanical properties of Nb–1Zr. Journal of Nuclear Materials, 2011, 414, 286-302.	1.3	12
102	Creep and fatigue issues for structural materials in demonstration fusion energy systems. Transactions of the Indian Institute of Metals, 2010, 63, 331-337.	0.7	4
103	Anomaly in dependence of radiation-induced vacancy accumulation on grain size. Journal of Nuclear Materials, 2010, 405, 261-265.	1.3	15
104	The Science and Technologies for Fusion Energy With Lasers and Direct-Drive Targets. IEEE Transactions on Plasma Science, 2010, 38, 690-703.	0.6	51
105	What is the Limit of Nanoparticle Strengthening?. MRS Bulletin, 2009, 34, 173-177.	1.7	11
106	Nb-Base FS-85 Alloy as a Candidate Structural Material for Space Reactor Applications: Effects of Thermal Aging. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 838-855.	1.1	16
107	Structural materials for fission & amp; fusion energy. Materials Today, 2009, 12, 12-19.	8.3	885
108	Environmental effects on irradiation creep behavior of highly purified V–4Cr–4Ti alloys (NIFS-Heats) irradiated by neutrons. Journal of Nuclear Materials, 2009, 386-388, 575-578.	1.3	11

#	Article	IF	CITATIONS
109	Irradiation creep of the US Heat 832665 of V–4Cr–4Ti. Journal of Nuclear Materials, 2009, 386-388, 618-621.	1.3	15
110	Advances in microstructural characterization. Journal of Nuclear Materials, 2009, 386-388, 8-14.	1.3	19
111	Tensile and fracture toughness properties of neutron-irradiated CuCrZr. Journal of Nuclear Materials, 2009, 393, 36-46.	1.3	37
112	Technical issues of reduced activation ferritic/martensitic steels for fabrication of ITER test blanket modules. Fusion Engineering and Design, 2008, 83, 1471-1476.	1.0	84
113	Development of advanced blanket performance under irradiation and system integration through JUPITER-II project. Fusion Engineering and Design, 2008, 83, 842-849.	1.0	15
114	Low temperature neutron irradiation effects on microstructure and tensile properties of molybdenum. Journal of Nuclear Materials, 2008, 376, 11-28.	1.3	41
115	Low-temperature thermally-activated deformation and irradiation softening in neutron-irradiated molybdenum. Journal of Nuclear Materials, 2008, 377, 409-414.	1.3	10
116	Characterization of defect accumulation in neutron-irradiated Mo by positron annihilation spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 3602-3606.	0.6	15
117	Mechanisms of stacking fault tetrahedra destruction by gliding dislocations in quenched gold. Philosophical Magazine, 2008, 88, 581-597.	0.7	54
118	Microstructures and Mechanical Properties of Irradiated Metals and Alloys. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 227-244.	0.2	12
119	One-Dimensional Fast Migration of Vacancy Clusters in Metals. Science, 2007, 318, 959-962.	6.0	168
120	Status of R&D activities on materials for fusion power reactors. Nuclear Fusion, 2007, 47, S696-S717.	1.6	128
121	Fracture mechanism maps in unirradiated and irradiated metals and alloys. Journal of Nuclear Materials, 2007, 361, 192-205.	1.3	18
122	Kinetics of coarsening of helium bubbles during implantation and post-implantation annealing. Journal of Nuclear Materials, 2007, 361, 149-159.	1.3	64
123	Critical questions in materials science and engineering for successful development of fusion power. Journal of Nuclear Materials, 2007, 367-370, 1-10.	1.3	67
124	Aging effects on microstructural and mechanical properties of select refractory metal alloys for space-reactor applications. Journal of Nuclear Materials, 2007, 366, 336-352.	1.3	18
125	Microstructural and mechanical property changes with aging of Mo–41Re and Mo–47.5Re alloys. Journal of Nuclear Materials, 2007, 366, 369-387.	1.3	18
126	Radiation-damage in molybdenum–rhenium alloys for space reactor applications. Journal of Nuclear Materials, 2007, 366, 388-406.	1.3	38

#	Article	IF	CITATIONS
127	Defect cluster formation and radiation hardening in molybdenum neutron-irradiated at 80°C. Journal of Nuclear Materials, 2007, 367-370, 817-822.	1.3	14
128	Biaxial thermal creep of two heats of V4Cr4Ti at 700 and 800°C in a liquid lithium environment. Journal of Nuclear Materials, 2007, 367-370, 788-793.	1.3	22
129	The temperature dependence of the yield stress for neutron-irradiated molybdenum. Journal of Nuclear Materials, 2007, 371, 53-60.	1.3	8
130	Microstructural and mechanical property changes in the Ta-base T-111 alloy following thermal aging. Journal of Nuclear Materials, 2007, 366, 353-368.	1.3	7
131	An overview of dual coolant Pb–17Li breeder first wall and blanket concept development for the US ITER-TBM design. Fusion Engineering and Design, 2006, 81, 461-467.	1.0	104
132	An overview of US ITER test blanket module program. Fusion Engineering and Design, 2006, 81, 433-441.	1.0	23
133	Destruction processes of large stacking fault tetrahedra induced by direct interaction with gliding dislocations. Journal of Nuclear Materials, 2006, 351, 285-294.	1.3	48
134	Microstructure of neutron-irradiated iron before and after tensile deformation. Journal of Nuclear Materials, 2006, 351, 269-284.	1.3	168
135	Tensile property of low activation vanadium alloy after liquid lithium exposure. Fusion Engineering and Design, 2006, 81, 307-313.	1.0	21
136	Effect of texture on the high temperature mechanical properties of Nb–1%Zr alloy. Scripta Materialia, 2006, 55, 719-722.	2.6	12
137	On the features of dislocation–obstacle interaction in thin films: large-scale atomistic simulation. Philosophical Magazine Letters, 2006, 86, 511-519.	0.5	35
138	Deformation Mechanism Maps of Unirradiated and Irradiated V-4Cr-4Ti. , 2006, , 328-344.		1
139	Overview of the U.S. Fusion Materials Sciences Program. Fusion Science and Technology, 2005, 47, 821-828.	0.6	10
140	Assessment of First Wall and Blanket Options with the Use of Liquid Breeder. Fusion Science and Technology, 2005, 47, 502-509.	0.6	27
141	Deformation microstructure of neutron-irradiated pure polycrystalline vanadium. Journal of Nuclear Materials, 2005, 336, 225-232.	1.3	33
142	Thermal conductivity degradation of ceramic materials due to low temperature, low dose neutron irradiation. Journal of Nuclear Materials, 2005, 340, 187-202.	1.3	125
143	Advanced materials for fusion technology. Fusion Engineering and Design, 2005, 74, 31-40.	1.0	173
144	Surface defects in Al2O3 and MgO irradiated with high-energy heavy ions. Surface and Coatings Technology, 2005, 196, 56-62.	2.2	25

#	Article	IF	CITATIONS
145	The collapse of stacking-fault tetrahedra by interaction with gliding dislocations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 400-401, 366-369.	2.6	35
146	Scientific Challenges, Opportunities and Priorities for the U.S. Fusion Energy Sciences Program. Journal of Fusion Energy, 2005, 24, 13-114.	0.5	3
147	Use of Beryllium and Beryllium Oxide in Space Reactors. AIP Conference Proceedings, 2005, , .	0.3	18
148	Fusion materials science: Overview of challenges and recent progress. Physics of Plasmas, 2005, 12, 058101.	0.7	241
149	Deformation Mechanism Maps of Unirradiated and Irradiated V-4Cr-4Ti. Journal of ASTM International, 2005, 2, 12462.	0.2	5
150	Radiation Effects in Refractory Alloys. AIP Conference Proceedings, 2004, , .	0.3	18
151	Materials needs for fusion, Generation IV fission reactors and spallation neutron sources – similarities and differences. Journal of Nuclear Materials, 2004, 329-333, 166-172.	1.3	262
152	Effect of initial oxygen content on the void swelling behavior of fast neutron irradiated copper. Journal of Nuclear Materials, 2004, 329-333, 938-941.	1.3	2
153	Deformation microstructure of neutron-irradiated pure polycrystalline metals. Journal of Nuclear Materials, 2004, 329-333, 947-952.	1.3	63
154	Dynamic observation of the collapse process of a stacking fault tetrahedron by moving dislocations. Journal of Nuclear Materials, 2004, 329-333, 919-923.	1.3	70
155	Varying temperature effects on mechanical properties of vanadium alloys during neutron irradiation. Journal of Nuclear Materials, 2004, 329-333, 472-476.	1.3	9
156	Materials to deliver the promise of fusion power – progress and challenges. Journal of Nuclear Materials, 2004, 329-333, 12-19.	1.3	129
157	Observation and analysis of defect cluster production and interactions with dislocations. Journal of Nuclear Materials, 2004, 329-333, 88-96.	1.3	209
158	Swift heavy ion-induced modification of Al2O3 and MgO surfaces. Nuclear Instruments & Methods in Physics Research B, 2003, 203, 136-140.	0.6	45
159	Microstructures Of Irradiated And Mechanically Deformed Metals And Alloys: Fundamental Aspects. Materials Research Society Symposia Proceedings, 2003, 792, 162.	0.1	4
160	Summary of the Varying Temperature Irradiation Experiment in HFIR. Fusion Science and Technology, 2003, 44, 450-454.	0.6	1
161	Gas Nuclear Transmutation Effects in Aluminum Nitride. Fusion Science and Technology, 2003, 44, 495-499.	0.6	3
162	On grain-size-dependent void swelling in pure copper irradiated with fission neutrons. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 1137-1158.	0.8	47

#	Article	IF	CITATIONS
163	Structural relaxation in amorphous silicon carbide. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 497-503.	0.6	94
164	On the conflicting roles of ionizing radiation in ceramics. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 758-766.	0.6	161
165	Impact of tritium removal and He-3 recycling on structure damage parameters in a D–D fusion system. Fusion Engineering and Design, 2002, 61-62, 561-567.	1.0	9
166	Overview of materials research for fusion reactors. Fusion Engineering and Design, 2002, 61-62, 13-25.	1.0	207
167	Nuclear features of the fusion ignition research experiment (FIRE). Fusion Engineering and Design, 2002, 63-64, 547-557.	1.0	10
168	Scientific and engineering advances from fusion materials R&D. Journal of Nuclear Materials, 2002, 307-311, 31-42.	1.3	59
169	Electrical in situ and post-irradiation properties of ceramics relevant to fusion irradiation conditions. Journal of Nuclear Materials, 2002, 307-311, 1073-1079.	1.3	7
170	Effect of periodic temperature variations on the microstructure of neutron-irradiated metals. Journal of Nuclear Materials, 2002, 307-311, 192-196.	1.3	20
171	Dose dependence of defect accumulation in neutron irradiated copper and iron. Journal of Nuclear Materials, 2002, 307-311, 912-917.	1.3	95
172	Specification of properties and design allowables for copper alloys used in HHF components of ITER. Journal of Nuclear Materials, 2002, 307-311, 668-672.	1.3	25
173	Vanadium alloys – overview and recent results. Journal of Nuclear Materials, 2002, 307-311, 547-554.	1.3	221
174	Effect of helium on the swelling of GlidCop Al25 IG alloy. Journal of Nuclear Materials, 2002, 306, 218-231.	1.3	9
175	A Plan for the Development of Fusion Energy. Journal of Fusion Energy, 2002, 21, 61-111.	0.5	20
176	The effect of copper-steel joining technology on the radiation resistance of copper alloys. Plasma Devices and Operations, 2001, 8, 241-255.	0.6	4
177	Electrical conductivity of alumina after heavy irradiation in a high-flux fission reactor. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2001, 81, 75-89.	0.6	5
178	Effect of neutron irradiation on the mechanical properties and fracture mode of cu/ss joints. Plasma Devices and Operations, 2001, 8, 225-239.	0.6	6
179	On the exploration of innovative concepts for fusion chamber technology. Fusion Engineering and Design, 2001, 54, 181-247.	1.0	285
180	ITER R&D: Vacuum Vessel and In-vessel Components: Materials Development and Test. Fusion Engineering and Design, 2001, 55, 231-246.	1.0	42

#	Article	IF	CITATIONS
181	Varying temperature irradiation experiment in HFIR. Journal of Nuclear Materials, 2001, 299, 148-156.	1.3	18
182	Theory and experiment of nanostructure self-organization in irradiated materials. Journal of Computer-Aided Materials Design, 2001, 8, 1-38.	0.7	87
183	Deformation mechanisms in 316 stainless steel irradiated at 60°C and 330°C. Journal of Nuclear Materials, 2000, 283-287, 528-534.	1.3	77
184	Effect of neutron dose and irradiation temperature on the mechanical properties and structure of dispersion strengthened copper alloys. Journal of Nuclear Materials, 2000, 283-287, 404-408.	1.3	20
185	In situ thermal conductivity measurement of ceramics in a fast neutron environment. Journal of Nuclear Materials, 2000, 283-287, 545-550.	1.3	13
186	Effect of strain rate on the tensile properties of unirradiated and irradiated V–4Cr–4Ti. Journal of Nuclear Materials, 2000, 283-287, 508-512.	1.3	44
187	Solute interactions in pure vanadium and V–4Cr–4Ti alloy. Journal of Nuclear Materials, 2000, 283-287, 616-621.	1.3	20
188	Critical issues and current status of vanadium alloys for fusion energy applications. Journal of Nuclear Materials, 2000, 283-287, 70-78.	1.3	113
189	Microstructure of Cu–Ni alloys neutron irradiated at 210°C and 420°C to 14 dpa. Journal of Nuclear Materials, 2000, 283-287, 306-312.	1.3	48
190	Effect of high-dose neutron irradiation on the mechanical properties and structure of copper alloys and Cu/SS joints for ITER applications. Journal of Nuclear Materials, 2000, 283-287, 523-527.	1.3	20
191	On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials. Journal of Nuclear Materials, 2000, 283-287, 349-352.	1.3	298
192	Operating temperature windows for fusion reactor structural materials. Fusion Engineering and Design, 2000, 51-52, 55-71.	1.0	399
193	Fundamental radiation effects parameters in metals and ceramics. Radiation Effects and Defects in Solids, 1999, 148, 447-477.	0.4	63
194	Heavy-ion irradiation effects in theABO4orthosilicates: Decomposition, amorphization, and recrystallization. Physical Review B, 1999, 59, 3981-3992.	1.1	88
195	Fracture toughness of copper-base alloys for fusion energy applications. Journal of Nuclear Materials, 1999, 271-272, 429-434.	1.3	35
196	Irradiation effects in ceramics for fusion reactor applications. Journal of Nuclear Materials, 1999, 271-272, 560-568.	1.3	41
197	A transient liquid-like phase in the displacement cascades of zircon, hafnon and thorite. Nature, 1998, 395, 56-58.	13.7	127
198	The influence of neutron spectrum and irradiation history on microstructural evolution in fusion structural materials. Journal of Nuclear Materials, 1998, 258-263, 130-139.	1.3	13

#	Article	IF	CITATIONS
199	Electrical properties of ceramics during reactor irradiation. Journal of Nuclear Materials, 1998, 258-263, 1867-1872.	1.3	23
200	Electrical conductivity and current-voltage characteristics of alumina with or without neutron and electron irradiation. Journal of Nuclear Materials, 1998, 258-263, 1848-1855.	1.3	14
201	The effect of neutron irradiation on mechanical properties of Cu/SS joints for ITER applications. Journal of Nuclear Materials, 1998, 258-263, 2069-2074.	1.3	13
202	Track formation and dislocation loop interaction in spinel irradiated with swift heavy ions. Nuclear Instruments & Methods in Physics Research B, 1998, 141, 737-746.	0.6	51
203	Amorphization of SiC under ion and neutron irradiation. Nuclear Instruments & Methods in Physics Research B, 1998, 141, 123-132.	0.6	190
204	Microstructure of Al2O3 and MgAl2O4 irradiated at low temperatures. Journal of Nuclear Materials, 1998, 253, 120-132.	1.3	58
205	Effect of neutron radiation on the dielectric, mechanical and thermal properties of ceramics for rf transmission windows. Journal of Nuclear Materials, 1998, 253, 190-195.	1.3	27
206	Microstructural examination of irradiated V–(4–5%)Cr–(4–5%)Ti. Journal of Nuclear Materials, 1998, 258-263, 1380-1385.	1.3	28
207	Temperature dependence of the radiation damage microstructure in V–4Cr–4Ti neutron irradiated to low dose. Journal of Nuclear Materials, 1998, 258-263, 1414-1419.	1.3	98
208	Research and development on vanadium alloys for fusion applications. Journal of Nuclear Materials, 1998, 258-263, 205-214.	1.3	169
209	Long term degradation of electrical insulation of Al2O3 under high flux fission reactor irradiation. Journal of Nuclear Materials, 1998, 258-263, 1861-1866.	1.3	23
210	Austenitic stainless steels and high strength copper alloys for fusion components. Journal of Nuclear Materials, 1998, 258-263, 183-192.	1.3	70
211	Design concept for the IFMIF test assemblies. Journal of Nuclear Materials, 1998, 258-263, 400-406.	1.3	3
212	The effect of neutron dose, irradiation and testing temperature on mechanical properties of copper alloys. Journal of Nuclear Materials, 1998, 258-263, 1015-1021.	1.3	18
213	Effect of neutron dose and spectra, He/dpa ratio and Ni and Zn accumulation on irradiation damage of pure copper and PH and DS copper alloys. Fusion Engineering and Design, 1998, 38, 459-473.	1.0	7
214	In situ measurement of radiation induced conductivity in oxide insulators during neutron irradiation. Journal of Applied Physics, 1998, 83, 1924-1930.	1.1	11
215	Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. Journal of Materials Research, 1998, 13, 1434-1484.	1.2	842
216	Toward a mechanistic understanding of radiation effects in materials. Radiation Effects and Defects in Solids, 1998, 144, 287-309.	0.4	2

#	Article	IF	CITATIONS
217	Dose Rate Dependence of the Amorphization of Silicon Carbide. Materials Research Society Symposia Proceedings, 1998, 540, 165.	0.1	4
218	Microstructure of Swift Heavyion Irradiated MgAl ₂ 0 ₄ Spinel. Materials Research Society Symposia Proceedings, 1998, 540, 299.	0.1	29
219	Effect of Low Temperature ion Irradiation on the Microstructure of Nitride Ceramics. Materials Research Society Symposia Proceedings, 1998, 540, 305.	0.1	7
220	Radiation Effects in Zircon, Hafnon, and Thorite: Implications for Pu Disposal. Materials Research Society Symposia Proceedings, 1998, 540, 395.	0.1	3
221	Defect production in ceramics. Journal of Nuclear Materials, 1997, 251, 200-217.	1.3	415
222	Microstructure of V-4Cr-4Ti Following Low Temperature Neutron Irradiation. Materials Research Society Symposia Proceedings, 1996, 439, 343.	0.1	4
223	Threshold Irradiation Dose for Amorphization of Silicon Carbide. Materials Research Society Symposia Proceedings, 1996, 439, 595.	0.1	16
224	Irradiation Spectrum and Ionization-Induced Diffusion Effects in Ceramics. Materials Research Society Symposia Proceedings, 1996, 439, 667.	0.1	25
225	Influence of irradiation spectrum and implanted ions on the amorphization of ceramics. Nuclear Instruments & Methods in Physics Research B, 1996, 116, 92-101.	0.6	181
226	Evaluation of copper alloys for fusion reactor divertor and first wall components. Journal of Nuclear Materials, 1996, 233-237, 127-137.	1.3	128
227	Low-temperature radiation embrittlement of copper alloys. Journal of Nuclear Materials, 1996, 233-237, 513-518.	1.3	37
228	The effect of neutron spectrum on the mechanical and physical properties of pure copper and copper alloys. Journal of Nuclear Materials, 1996, 233-237, 526-533.	1.3	40
229	Potential and limitations of ceramics in terms of structural and electrical integrity in fusion environments. Journal of Nuclear Materials, 1996, 233-237, 100-110.	1.3	58
230	Irradiation performance of stainless steels for ITER application. Journal of Nuclear Materials, 1996, 239, 126-131.	1.3	58
231	Transient effects of ionizing and displacive radiation on the dielectric properties of ceramics. Journal of Applied Physics, 1996, 79, 2920-2933.	1.1	24
232	Microstructure of copper and nickel irradiated with fission neutrons near 230°C. Journal of Nuclear Materials, 1995, 225, 123-131.	1.3	69
233	In-situ measurement of radiation-induced conductivity of thin film ceramics. Journal of Nuclear Materials, 1995, 219, 169-175.	1.3	16
234	On the measurement of radiation induced electrical degradation in insulating materials. Journal of Nuclear Materials, 1995, 219, 190-201.	1.3	29

#	Article	IF	CITATIONS
235	Effect of irradiation spectrum on the microstructural evolution in ceramic insulators. Journal of Nuclear Materials, 1995, 219, 113-127.	1.3	116
236	Investigation of radiation induced electrical degradation in alumina under ITER-relevant conditions. Journal of Nuclear Materials, 1995, 226, 58-66.	1.3	23
237	Analytical Electron Microscopy of Precipitates in Ion-Implanted Mgal2O4 Spinel. Materials Research Society Symposia Proceedings, 1994, 373, 419.	0.1	1
238	Defect microstructure in copper alloys irradiated with 750 MeV protons. Journal of Nuclear Materials, 1994, 212-215, 132-138.	1.3	32
239	In-core measurement of dc electrical conductivity of ceramics. Journal of Nuclear Materials, 1994, 212-215, 1107-1112.	1.3	9
240	Radiation effects in ceramics. Journal of Nuclear Materials, 1994, 216, 291-321.	1.3	300
241	Effect of ion irradiation on the structural stability of dispersion-strengthened copper alloys. Journal of Nuclear Materials, 1994, 208, 119-127.	1.3	10
242	Microstructure of Al2O3 and MgAl2O4 preimplanted with H, He, C and irradiated with Ar+ ions. Journal of Nuclear Materials, 1994, 209, 191-203.	1.3	26
243	Influence of irradiation parameters on damage accumulation in metals and alloys. Journal of Nuclear Materials, 1994, 217, 161-171.	1.3	25
244	Microstructural evolution in ion- and/or electron-irradiated single crystal Al2O3. Journal of Nuclear Materials, 1994, 212-215, 1039-1045.	1.3	8
245	Microstructure of ion irradiated ceramic insulators. Nuclear Instruments & Methods in Physics Research B, 1994, 91, 234-246.	0.6	136
246	Amorphization of Al2O3 by ion induced density reduction. Nuclear Instruments & Methods in Physics Research B, 1994, 84, 323-330.	0.6	9
247	Effect of Irradiation Spectrum on the Microstructure of Ion-Irradiated A120O3. Materials Research Society Symposia Proceedings, 1994, 373, 287.	0.1	6
248	Microstructure of A12O3 Irradiated with an Applied Electric Field. Materials Research Society Symposia Proceedings, 1994, 373, 299.	0.1	5
249	Amorphization and the Effect of Implanted Ions in Sic. Materials Research Society Symposia Proceedings, 1994, 373, 377.	0.1	8
250	Ceramics radiation effects issues for ITER. Plasma Devices and Operations, 1994, 3, 139-149.	0.6	9
251	Ion irradiation induced subgrain structure formation in dispersion strengthened copper alloys. Plasma Devices and Operations, 1994, 2, 293-300.	0.6	3
252	EELS of colloids in Mg+ implanted MgAl2O4 spinel. Proceedings Annual Meeting Electron Microscopy Society of America, 1994, 52, 980-981.	0.0	0

#	Article	IF	CITATIONS
253	Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel. Journal of Nuclear Materials, 1993, 206, 266-286.	1.3	323
254	Analysis of displacement damage and defect production under cascade damage conditions. Journal of Nuclear Materials, 1993, 199, 173-191.	1.3	187
255	Radiation-induced electrical degradation of ceramic materials: an artefact?. Journal of Nuclear Materials, 1993, 206, 68-71.	1.3	38
256	Defect accumulation in pure fcc metals in the transient regime: a review. Journal of Nuclear Materials, 1993, 206, 212-229.	1.3	247
257	Dispersoid stability in a Cu-Al2O3 alloy under energetic cascade damage conditions. Journal of Nuclear Materials, 1992, 195, 11-16.	1.3	24
258	Radiation-induced changes in the physical properties of ceramic materials. Journal of Nuclear Materials, 1992, 191-194, 58-66.	1.3	101
259	Radiation induced microstructure and mechanical property evolution of SiC/C/SiC composite materials. Journal of Nuclear Materials, 1992, 191-194, 560-565.	1.3	19
260	Measurement of the effect of radiation damage to ceramic composite interfacial strength. Journal of Nuclear Materials, 1992, 191-194, 566-570.	1.3	15
261	Measurement of dielectric properties in ceramics under ionizing and displacive irradiation conditions. Journal of Nuclear Materials, 1992, 191-194, 602-606.	1.3	12
262	Lattice location and clustering of helium in ceramic oxides. Journal of Nuclear Materials, 1992, 191-194, 625-629.	1.3	17
263	Defect formation in ion-irradiated Al2O3 and MgAl2O4: effects of grain boundaries and fusion transmutation products. Journal of Nuclear Materials, 1992, 191-194, 640-644.	1.3	16
264	Anisotropic dislocation loop nucleation in ion-irradiated MgAl2O4. Journal of Nuclear Materials, 1992, 191-194, 645-649.	1.3	15
265	Materials issues in diagnostic systems for BPX and ITER. Journal of Nuclear Materials, 1992, 191-194, 1399-1403.	1.3	15
266	Strength and fatigue of dispersion-strengthened copper. Journal of Nuclear Materials, 1991, 179-181, 263-266.	1.3	53
267	Helium-assisted cavity formation in ion-irradiated ceramics. Journal of Nuclear Materials, 1991, 179-181, 395-398.	1.3	36
268	Radiation hardening in neutron-irradiated polycrystalline copper: Barrier strength of defect clusters. Journal of Nuclear Materials, 1991, 179-181, 982-985.	1.3	36
269	Preparation of Magnesium Aluminate Spinel Containing Controlled Amounts of 17O Isotope. Journal of the American Ceramic Society, 1991, 74, 1442-1444.	1.9	5
270	Technique for preparing cross-section transmission electron microscope specimens from ion-irradiated ceramics. Journal of Electron Microscopy Technique, 1991, 19, 452-460.	1.1	19

#	Article	IF	CITATIONS
271	Microstructure and cavity swelling in reactor-irradiated dilute copper-boron alloy. Journal of Nuclear Materials, 1991, 179-181, 994-997.	1.3	27
272	Mechanical Properties of Carbon-Implanted Niobium. Materials Research Society Symposia Proceedings, 1990, 188, 121.	0.1	2
273	Preparation and Characterization of 17O-Enriched Alumina for Nuclear Fusion Damage Experiments. Journal of the American Ceramic Society, 1990, 73, 425-429.	1.9	8
274	Effects of preinjected helium in heavy-ion irradiated nickel and nickel-copper alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1990, 21, 1847-1851.	1.4	14
275	Effect of oxygen on vacancy cluster morphology in metals. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1990, 21, 1037-1051.	1.4	6
276	Effect of oxygen on vacancy cluster morphology in metals. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1990, 21, 1037-1051.	1.4	47
277	Microstructural changes in MgAl2O4 induced by ion irradiation. Nuclear Instruments & Methods in Physics Research B, 1990, 46, 165-170.	0.6	11
278	Void swelling and defect cluster formation in reactor-irradiated copper. Journal of Nuclear Materials, 1989, 168, 262-267.	1.3	153
279	Hardness and Depth-Dependent Microstructure of Ion-Irradiated Magnesium Aluminate Spinel. Journal of the American Ceramic Society, 1989, 72, 1343-1351.	1.9	67
280	Ion Irradiation Studies of Oxide Ceramics. , 1989, , 219-229.		5
281	Defect microstructures in neutron-irradiated copper and stainless steel. Journal of Nuclear Materials, 1988, 155-157, 1196-1200.	1.3	40
282	Surviving defect fraction in 14-Mev neutron-irradiated copper. Journal of Nuclear Materials, 1988, 155-157, 1201-1204.	1.3	11
283	Electrical resistivity of small dislocation loops in irradiated copper. Journal of Physics F: Metal Physics, 1988, 18, 377-391.	1.6	22
284	II. Effect of oxygen and helium on void formation in metals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1987, 55, 127-140.	0.8	73
285	I. Energy calculations for pure metals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1987, 55, 111-125.	0.8	107
286	Microstructure and properties of copper alloys following 14-mev neutron irradiation. Journal of Nuclear Materials, 1987, 150, 140-158.	1.3	64
287	Thin film characterization using a mechanical properties microprobe. Thin Solid Films, 1987, 153, 185-196.	0.8	93
288	Microstructure of copper following high dose 14-MeV Cu ion irradiation. Journal of Nuclear Materials, 1986, 138, 46-56.	1.3	48

#	Article	IF	CITATIONS
289	Radiation-enhanced recrystallization in copper alloys. Journal of Nuclear Materials, 1986, 141-143, 188-192.	1.3	31
290	Mechanical property measurements on ion-irradiated copper and Cu-Zr. Journal of Nuclear Materials, 1986, 141-143, 548-552.	1.3	44
291	Preparation of ion-irradiated foils for cross-section analysis. Nuclear Instruments & Methods in Physics Research B, 1986, 16, 154-162.	0.6	13
292	Ion irradiation of high strength, high conductivity copper alloys at fusion-relevant temperatures. Journal of Nuclear Materials, 1985, 133-134, 680-684.	1.3	5
293	Correlation of the yield strength and mlcrohardnesss of high-strength, high-conductivity copper alloys. Journal of Nuclear Materials, 1985, 133-134, 685-689.	1.3	14
294	14-MeV neutron irradiation of copper alloys. Journal of Nuclear Materials, 1984, 122, 449-454.	1.3	14
295	Helium bubble formation in Cu, Ni and Cu-Ni alloys. Journal of Nuclear Materials, 1983, 117, 213-217.	1.3	6
296	Dislocation Loop Formation in Ion-Irradiated Polycrystalline Spinel and Alumina. , 0, , 749-749-15.		7
297	A Brief Review of Radiation-Induced Cavity Swelling and Hardening in Copper and Copper Alloys. , 0, , 813-813-22.		7