Duojia Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8565141/publications.pdf

Version: 2024-02-01

75	19,930	51	90395 73 g-index
papers	citations	h-index	
116	116	116	19505
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	YAP/TAZ drives cell proliferation and tumour growth via a polyamine–eIF5A hypusination–LSD1 axis. Nature Cell Biology, 2022, 24, 373-383.	4.6	26
2	The unfolding of the Hippo signaling pathway. Developmental Biology, 2022, 487, 1-9.	0.9	10
3	A YAP/TAZ-TEAD signalling module links endothelial nutrient acquisition to angiogenic growth. Nature Metabolism, 2022, 4, 672-682.	5.1	20
4	YAP induces an oncogenic transcriptional program through TET1-mediated epigenetic remodeling in liver growth and tumorigenesis. Nature Genetics, 2022, 54, 1202-1213.	9.4	28
5	The Hippo Pathway in Liver Homeostasis and Pathophysiology. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 299-322.	9.6	79
6	WWTR1(TAZ)-CAMTA1 reprograms endothelial cells to drive epithelioid hemangioendothelioma. Genes and Development, 2021, 35, 495-511.	2.7	27
7	FADS3 is a Δ14Z sphingoid base desaturase that contributes to gender differences in the human plasma sphingolipidome. Journal of Biological Chemistry, 2020, 295, 1889-1897.	1.6	64
8	Spectrin couples cell shape, cortical tension, and Hippo signaling in retinal epithelial morphogenesis. Journal of Cell Biology, 2020, 219, .	2.3	29
9	The Hippo Signaling Pathway in Development and Disease. Developmental Cell, 2019, 50, 264-282.	3.1	522
10	YAP1 oncogene is a context-specific driver for pancreatic ductal adenocarcinoma. JCI Insight, 2019, 4, .	2.3	46
11	Nerfin-1 represses transcriptional output of Hippo signaling in cell competition. ELife, 2019, 8, .	2.8	19
12	Validating upstream regulators of Yorkie activity in Hippo signaling through <i>scalloped</i> based genetic epistasis. Development (Cambridge), 2018, 145, .	1.2	14
13	YAP Controls Endothelial Activation and Vascular Inflammation Through TRAF6. Circulation Research, 2018, 123, 43-56.	2.0	153
14	Characterization of a <i>cdc14</i> null allele in <i>Drosophila melanogaster</i> . Biology Open, 2018, 7, .	0.6	6
15	Hippo, Drosophila MST, is a novel modifier of motor neuron degeneration induced by knockdown of Caz, Drosophila FUS. Experimental Cell Research, 2018, 371, 311-321.	1.2	14
16	A RhoA–YAP–c-Myc signaling axis promotes the development of polycystic kidney disease. Genes and Development, 2018, 32, 781-793.	2.7	94
17	YAP Is Essential for Treg-Mediated Suppression of Antitumor Immunity. Cancer Discovery, 2018, 8, 1026-1043.	7.7	152
18	NF2 Activates Hippo Signaling and Promotes Ischemia/Reperfusion Injury in Heart. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR2-1.	0.0	0

#	Article	IF	Citations
19	Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. Journal of Cell Biology, 2017, 216, 495-510.	2.3	88
20	Inhibitors of <scp>STAT</scp> 3, βâ€eatenin, and <scp>IGF</scp> â€1R sensitize mouse <scp>PIK</scp> 3 <scp>CA</scp> â€mutant breast cancer to <scp>PI</scp> 3K inhibitors. Molecular Oncology, 2017, 11, 552-566.	2.1	25
21	Homeostatic Control of Hpo/MST Kinase Activity through Autophosphorylation-Dependent Recruitment of the STRIPAK PP2A Phosphatase Complex. Cell Reports, 2017, 21, 3612-3623.	2.9	77
22	The Hippo signaling functions through the Notch signaling to regulate intrahepatic bile duct development in mammals. Laboratory Investigation, 2017, 97, 843-853.	1.7	43
23	Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling. PLoS Biology, 2017, 15, e2000949.	2.6	27
24	NF2 Activates Hippo Signaling and Promotes Ischemia/Reperfusion Injury in the Heart. Circulation Research, 2016, 119, 596-606.	2.0	103
25	Yes-associated protein impacts adherens junction assembly through regulating actin cytoskeleton organization. American Journal of Physiology - Renal Physiology, 2016, 311, G396-G411.	1.6	31
26	Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila. Cell, 2016, 164, 406-419.	13.5	203
27	Combined Treatment with Epigenetic, Differentiating, and Chemotherapeutic Agents Cooperatively Targets Tumor-Initiating Cells in Triple-Negative Breast Cancer. Cancer Research, 2016, 76, 2013-2024.	0.4	40
28	Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nature Chemical Biology, 2016, 12, 282-289.	3.9	190
29	YAP Nuclear Localization in the Absence of Cell-Cell Contact Is Mediated by a Filamentous Actin-dependent, Myosin II- and Phospho-YAP-independent Pathway during Extracellular Matrix Mechanosensing. Journal of Biological Chemistry, 2016, 291, 6096-6110.	1.6	188
30	β-Catenin destruction complex-independent regulation of Hippo–YAP signaling by APC in intestinal tumorigenesis. Genes and Development, 2015, 29, 1493-1506.	2.7	155
31	YAPing Hippo Forecasts a New Target for Lung Cancer Prevention and Treatment. Journal of Clinical Oncology, 2015, 33, 2311-2313.	0.8	12
32	Homeostatic control of Hippo signaling activity revealed by an endogenous activating mutation in YAP. Genes and Development, 2015, 29, 1285-1297.	2.7	125
33	Structural basis for Mob1-dependent activation of the core Mst–Lats kinase cascade in Hippo signaling. Genes and Development, 2015, 29, 1416-1431.	2.7	140
34	A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes and Development, 2015, 29, 1271-1284.	2.7	278
35	Identification of Happyhour/MAP4K as Alternative Hpo/Mst-like Kinases in the Hippo Kinase Cascade. Developmental Cell, 2015, 34, 642-655.	3.1	172
36	Spectrin regulates Hippo signaling by modulating cortical actomyosin activity. ELife, 2015, 4, e06567.	2.8	94

#	Article	IF	Citations
37	A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nature Communications, 2014, 5, 3315.	5.8	209
38	Hippo Signaling Influences HNF4A and FOXA2 Enhancer Switching during Hepatocyte Differentiation. Cell Reports, 2014, 9, 261-271.	2.9	89
39	A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes and Development, 2014, 28, 432-437.	2.7	187
40	The use of Yes-associated protein expression in the diagnosis of persistent neonatal cholestatic liver disease. Human Pathology, 2014, 45, 1057-1064.	1.1	25
41	The Hippo effector Yorkie activates transcription by interacting with a histone methyltransferase complex through Ncoa6. ELife, 2014, 3, .	2.8	58
42	Structural Basis for Autoactivation of Human Mst2 Kinase and Its Regulation by RASSF5. Structure, 2013, 21, 1757-1768.	1.6	82
43	Spatial Organization of Hippo Signaling at the Plasma Membrane Mediated by the Tumor Suppressor Merlin/NF2. Cell, 2013, 154, 1342-1355.	13.5	422
44	The Hippo Effector Yorkie Controls Normal Tissue Growth by Antagonizing Scalloped-Mediated Default Repression. Developmental Cell, 2013, 25, 388-401.	3.1	220
45	Yes-associated Protein Isoform 1 (Yap1) Promotes Cardiomyocyte Survival and Growth to Protect against Myocardial Ischemic Injury. Journal of Biological Chemistry, 2013, 288, 3977-3988.	1.6	211
46	Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes and Development, 2013, 27, 1223-1232.	2.7	269
47	Premetazoan Origin of the Hippo Signaling Pathway. Cell Reports, 2012, 1, 13-20.	2.9	111
48	Yesâ€associated protein regulates the hepatic response after bile duct ligation. Hepatology, 2012, 56, 1097-1107.	3.6	145
49	Genetic and pharmacological disruption of the TEAD–YAP complex suppresses the oncogenic activity of YAP. Genes and Development, 2012, 26, 1300-1305.	2.7	1,135
50	The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes and Development, 2010, 24, 2383-2388.	2.7	426
51	Structural and functional analysis of the YAP-binding domain of human TEAD2. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7293-7298.	3.3	133
52	The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10532-10537.	3.3	286
53	Kibra Functions as a Tumor Suppressor Protein that Regulates Hippo Signaling in Conjunction with Merlin and Expanded. Developmental Cell, 2010, 18, 288-299.	3.1	439
54	The Merlin/NF2 Tumor Suppressor Functions through the YAP Oncoprotein to Regulate Tissue Homeostasis in Mammals. Developmental Cell, 2010, 19, 27-38.	3.1	663

#	Article	IF	CITATIONS
55	The Hippo Signaling Pathway in Development and Cancer. Developmental Cell, 2010, 19, 491-505.	3.1	1,976
56	The YAP Transcriptional Co-Activator Is Not Required for Mouse Hematopoiesis, at Steady State or After 5FU Treatment Blood, 2010, 116, 1592-1592.	0.6	0
57	Nuclear CDKs Drive Smad Transcriptional Activation and Turnover in BMP and TGF-Î ² Pathways. Cell, 2009, 139, 757-769.	13.5	627
58	The TEAD/TEF Family Protein Scalloped MediatesÂTranscriptional Output of the Hippo Growth-Regulatory Pathway. Developmental Cell, 2008, 14, 388-398.	3.1	563
59	Fat Flies Expanded the Hippo Pathway: A Matter of Size Control. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe12.	4.1	14
60	Hippo signaling in organ size control. Genes and Development, 2007, 21, 886-897.	2.7	567
61	Elucidation of a Universal Size-Control Mechanism in Drosophila and Mammals. Cell, 2007, 130, 1120-1133.	13.5	2,026
62	Drosophila Target of Rapamycin Kinase Functions as a Multimer. Genetics, 2006, 172, 355-362.	1.2	75
63	The Phosphatase Subunit Tap42 Functions Independently of Target of Rapamycin to Regulate Cell Division and Survival in Drosophila. Genetics, 2005, 170, 733-740.	1.2	12
64	The Hippo Signaling Pathway Coordinately Regulates Cell Proliferation and Apoptosis by Inactivating Yorkie, the Drosophila Homolog of YAP. Cell, 2005, 122, 421-434.	13.5	1,574
65	Tsc2 is not a critical target of Akt during normal Drosophila development. Genes and Development, 2004, 18, 2479-2484.	2.7	95
66	Tuberous sclerosis complex: from Drosophila to human disease. Trends in Cell Biology, 2004, 14, 78-85.	3.6	158
67	Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nature Cell Biology, 2003, 5, 578-581.	4.6	828
68	hippo Encodes a Ste-20 Family Protein Kinase that Restricts Cell Proliferation and Promotes Apoptosis in Conjunction with salvador and warts. Cell, 2003, 114, 445-456.	13.5	936
69	Tsc tumour suppressor proteins antagonize amino-acid–TOR signalling. Nature Cell Biology, 2002, 4, 699-704.	4.6	627
70	TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes and Development, 2001, 15, 1383-1392.	2.7	410
71	Drosophila PTEN Regulates Cell Growth and Proliferation through PI3K-Dependent and -Independent Pathways. Developmental Biology, 2000, 221, 404-418.	0.9	236
72	Kuzbanian Controls Proteolytic Processing of Notch and Mediates Lateral Inhibition during Drosophila and Vertebrate Neurogenesis. Cell, 1997, 90, 271-280.	13.5	488

Duojia Pan

#	Article	IF	CITATIONS
73	cAMP-dependent protein kinase and hedgehog act antagonistically in regulating decapentaplegic transcription in drosophila imaginal discs. Cell, 1995, 80, 543-552.	13.5	250
74	The bipartite D. melanogaster twist promoter is reorganized in D. virilis. Mechanisms of Development, 1994, 46, 41-53.	1.7	13
75	Genome editing in the unicellular holozoan Capsaspora owczarzaki suggests a premetazoan role for the Hippo pathway in multicellular morphogenesis. ELife, 0, 11 , .	2.8	15