Beat C Bornhauser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8565061/publications.pdf

Version: 2024-02-01

66 papers

4,247 citations

28 h-index 59 g-index

67 all docs

67
docs citations

67 times ranked

8960 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov	verlock 10 4.3	Tf 50 742 To 1,430
2	Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. Journal of Clinical Investigation, 2010, 120, 1310-1323.	3.9	287
3	Altered synaptic clustering of GABAAreceptors in mice lacking dystrophin (mdx mice). European Journal of Neuroscience, 1999, 11, 4457-4462.	1.2	211
4	Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood, 2017, 129, e26-e37.	0.6	195
5	<i>IKZF1</i> ^{plus} Defines a New Minimal Residual Disease–Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2018, 36, 1240-1249.	0.8	194
6	Genomics and drug profiling of fatal TCF3-HLFâ [^] positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nature Genetics, 2015, 47, 1020-1029.	9.4	190
7	Efficient apoptosis requires feedback amplification of upstream apoptotic signals by effector caspase-3 or -7. Science Advances, 2019, 5, eaau9433.	4.7	172
8	The activating STAT5B N642H mutation is a common abnormality in pediatric T-cell acute lymphoblastic leukemia and confers a higher risk of relapse. Haematologica, 2014, 99, e188-e192.	1.7	114
9	CD133 Positive Embryonal Rhabdomyosarcoma Stem-Like Cell Population Is Enriched in Rhabdospheres. PLoS ONE, 2011, 6, e19506.	1.1	111
10	Activation of concurrent apoptosis and necroptosis by SMAC mimetics for the treatment of refractory and relapsed ALL. Science Translational Medicine, 2016, 8, 339ra70.	5.8	92
11	Xenografts of highly resistant leukemia recapitulate the clonal composition of the leukemogenic compartment. Blood, 2011, 118, 1854-1864.	0.6	73
12	Cell and Molecular Determinants of <i>In Vivo</i> Efficacy of the BH3 Mimetic ABT-263 against Pediatric Acute Lymphoblastic Leukemia Xenografts. Clinical Cancer Research, 2014, 20, 4520-4531.	3.2	67
13	USP7 Cooperates with NOTCH1 to Drive the Oncogenic Transcriptional Program in T-Cell Leukemia. Clinical Cancer Research, 2019, 25, 222-239.	3.2	66
14	Pharmacological disruption of the Notch transcription factor complex. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16292-16301.	3.3	64
15	Leukemia surfaceome analysis reveals new disease-associated features. Blood, 2013, 121, e149-e159.	0.6	63
16	Differential expression of utrophin and dystrophin in CNS neurons: An in situ hybridization and immunohistochemical study. Journal of Comparative Neurology, 2000, 422, 594-611.	0.9	62
17	Single-cell analysis of structural variations and complex rearrangements with tri-channel processing. Nature Biotechnology, 2020, 38, 343-354.	9.4	59
18	Fibroblast Growth Factor-21 (FGF21) Regulates Low-density Lipoprotein Receptor (LDLR) Levels in Cells via the E3-ubiquitin Ligase Mylip/Idol and the Canopy2 (Cnpy2)/Mylip-interacting Saposin-like Protein (Msap). Journal of Biological Chemistry, 2012, 287, 12602-12611.	1.6	56

#	Article	IF	Citations
19	MSAP Is a Novel MIR-interacting Protein That Enhances Neurite Outgrowth and Increases Myosin Regulatory Light Chain. Journal of Biological Chemistry, 2003, 278, 35412-35420.	1.6	54
20	Low-dose arsenic trioxide sensitizes glucocorticoid-resistant acute lymphoblastic leukemia cells to dexamethasone via an Akt-dependent pathway. Blood, 2007, 110, 2084-2091.	0.6	53
21	Cooperative Enhancer Activation by TLX1 and STAT5 Drives Development of NUP214-ABL1/TLX1-Positive T Cell Acute Lymphoblastic Leukemia. Cancer Cell, 2018, 34, 271-285.e7.	7.7	48
22	DYRK1A regulates B cell acute lymphoblastic leukemia through phosphorylation of FOXO1 and STAT3. Journal of Clinical Investigation, 2021, 131, .	3.9	47
23	<scp>PDX</scp> models recapitulate the genetic and epigenetic landscape of pediatric Tâ€eell leukemia. EMBO Molecular Medicine, 2018, 10, .	3.3	38
24	Image-based RNA interference screening reveals an individual dependence of acute lymphoblastic leukemia on stromal cysteine support. Oncotarget, 2014, 5, 11501-11512.	0.8	37
25	CD70 reverse signaling enhances NK cell function and immunosurveillance in CD27-expressing B-cell malignancies. Blood, 2017, 130, 297-309.	0.6	37
26	Clinical or ATPase domain mutations in ABCD4 disrupt the interaction between the vitamin B12-trafficking proteins ABCD4 and LMBD1. Journal of Biological Chemistry, 2017, 292, 11980-11991.	1.6	36
27	The Leukemogenic TCF3-HLF Complex Rewires Enhancers Driving Cellular Identity and Self-Renewal Conferring EP300 Vulnerability. Cancer Cell, 2019, 36, 630-644.e9.	7.7	35
28	Prediction of venetoclax activity in precursor B-ALL by functional assessment of apoptosis signaling. Cell Death and Disease, 2019, 10, 571.	2.7	29
29	Constitutive Activation of RAS/MAPK Pathway Cooperates with Trisomy 21 and Is Therapeutically Exploitable in Down Syndrome B-cell Leukemia. Clinical Cancer Research, 2020, 26, 3307-3318.	3.2	28
30	MAPK-ERK is a central pathway in T-cell acute lymphoblastic leukemia that drives steroid resistance. Leukemia, 2021, 35, 3394-3405.	3.3	28
31	PDGF regulates the actin cytoskeleton through hnRNP-K-mediated activation of the ubiquitin E3-ligase MIR. EMBO Journal, 2006, 25, 1871-1882.	3.5	21
32	Identification and characterisation of transcript and protein of a new short N-terminal utrophin isoform., 2000, 77, 418-431.		20
33	Functional activities and cellular localization of the ezrin, radixin, moesin (ERM) and RING zinc finger domains in MIR. FEBS Letters, 2003, 553, 195-199.	1.3	20
34	Î ³ -Catenin-Dependent Signals Maintain BCR-ABL1+ B Cell Acute Lymphoblastic Leukemia. Cancer Cell, 2019, 35, 649-663.e10.	7.7	20
35	14q32 rearrangements deregulating <i>BCL11B </i> mark a distinct subgroup of T and myeloid immature acute leukemia. Blood, 2021, 138, 773-784.	0.6	19
36	Neuronal Expression of the ERM-like Protein MIR in Rat Brain and Its Localization to Human Chromosome 6. Biochemical and Biophysical Research Communications, 2000, 279, 879-883.	1.0	18

#	Article	IF	Citations
37	Pre-clinical evaluation of second generation PIM inhibitors for the treatment of T-cell acute lymphoblastic leukemia and lymphoma. Haematologica, 2019, 104, e17-e20.	1.7	18
38	Dexamethasone regulates expression of BRUCE/Apollon and the proliferation of neural progenitor cells. FEBS Letters, 2009, 583, 2213-2217.	1.3	15
39	Mylip makes an Idol turn into regulation of LDL receptor. Cellular and Molecular Life Sciences, 2009, 66, 3399-3402.	2.4	14
40	Chromatin accessibility landscape of pediatric Tâ€lymphoblastic leukemia and human Tâ€eell precursors. EMBO Molecular Medicine, 2020, 12, e12104.	3.3	13
41	BTK inhibition sensitizes acute lymphoblastic leukemia to asparaginase by suppressing the amino acid response pathway. Blood, 2021, 138, 2383-2395.	0.6	13
42	Exploiting Necroptosis for Therapy of Acute Lymphoblastic Leukemia. Frontiers in Cell and Developmental Biology, 2019, 7, 40.	1.8	10
43	Frequency and prognostic impact of ZEB2 H1038 and Q1072 mutations in childhood B-other acute lymphoblastic leukemia. Haematologica, 2021, 106, 886-890.	1.7	9
44	Clonal dynamics in pediatric Bâ€eell precursor acute lymphoblastic leukemia with very early relapse. Pediatric Blood and Cancer, 2022, 69, e29361.	0.8	9
45	TNFR2 is required for RIP1-dependent cell death in human leukemia. Blood Advances, 2020, 4, 4823-4833.	2.5	8
46	<scp>LRH</scp> â€1/ <scp>NR5A2</scp> interacts with the glucocorticoid receptor to regulate glucocorticoid resistance. EMBO Reports, 2022, 23, .	2.0	7
47	The hematopoietic stem cell marker VNN2 is associated with chemoresistance in pediatric B-cell precursor ALL. Blood Advances, 2020, 4, 4052-4064.	2.5	5
48	Pediatric ALL relapses after allo-SCT show high individuality, clonal dynamics, selective pressure, and druggable targets. Blood Advances, 2019, 3, 3143-3156.	2.5	4
49	Rapid Generation of Leukemogenic Chromosomal Translocations in Vivo Using CRISPR/Cas9. HemaSphere, 2020, 4, e456.	1.2	4
50	Pediatric T-ALL type-1 and type-2 relapses develop along distinct pathways of clonal evolution. Leukemia, 2022, 36, 1759-1768.	3.3	4
51	Alternative technique for intrafemoral injection and bone marrow sampling in mouse transplant models. Leukemia and Lymphoma, 2011, 52, 1806-1808.	0.6	3
52	Repurposing anthelmintic agents to eradicate resistant leukemia. Blood Cancer Journal, 2020, 10, 72.	2.8	3
53	Have chemosensitizing strategies for multidrug-resistant childhood acute lymphoblastic leukemia come of age?. Expert Review of Hematology, 2010, 3, 369-372.	1.0	2
54	Chemoresistance and Drug Profiling in ALL. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S57-S58.	0.2	2

#	Article	IF	CITATIONS
55	DOWN'S Syndrome Acute Lymphoblastic LEUKEMIA: A HIGHLY Heterogeneous DISEASE DRIVEN by an Aberrant CRLF2 JAK2 Cooperation – A REPORT FROM the Ibfm-STUDY GROUP Blood, 2009, 114, 11-11.	0.6	2
56	Leukemia-Initiating Cells Are Frequent in Very High Risk Childhood Acute Lymphoblastic Leukemia and Give Rise to Relatively Stable Phenotypes in Immunodeficient Mice Blood, 2009, 114, 86-86.	0.6	2
57	Efficient Generation of Multi-gene Knockout Cell Lines and Patient-derived Xenografts Using Multi-colored Lenti-CRISPR-Cas9. Bio-protocol, 2017, 7, e2222.	0.2	2
58	High Immunoproteasome Activity and sXBP1 in Pediatric Precursor B-ALL Predicts Sensitivity towards Proteasome Inhibitors. Cells, 2021, 10, 2853.	1.8	2
59	A Hopeful Leap Forward by Multicentric Cooperation for Precision-Based Therapy for Very Resistant, Relapsed, or Refractory Childhood Leukemia. Cancer Discovery, 2021, 11, 1322-1323.	7.7	1
60	The Central Role of MAPK-ERK Signaling in IL7-Dependent and IL7-Independent Steroid Resistance Reveals a Broad Application of MEK-Inhibitors Compared to JAK1/2-Inhibition in T-ALL. Blood, 2020, 136, 20-20.	0.6	1
61	Tissue Expression and Actin Binding of a Novel N-Terminal Utrophin Isoform. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-18.	3.0	O
62	Drug Response Profiling to Identify Selective Pharmacological Activity in Drug Resistant ALL. Blood, 2015, 126, 2532-2532.	0.6	0
63	Activation of Simultaneous Apoptosis and Necroptosis to Eradicate Drug Resistant Leukemia. Blood, 2015, 126, 1283-1283.	0.6	O
64	Pediatric T-ALLs Developing into a Type 2 Relapse Originate from Cells That Carry the Potential of Variable Maturation into Subclones with Distinct Chromatin Landscapes. Blood, 2018, 132, 1545-1545.	0.6	0
65	Inducible Phase Separation of GSK3 \hat{l}_{\pm} As a Mechanism for Asparaginase Resistance in Acute Leukemias. Blood, 2019, 134, 169-169.	0.6	0
66	<i>In Vitro</i> Drug Response Profiling in BCP- and T-ALL Primary Samples Adds a Robust Functional Layer Enabling Optimized Guidance of Individualized Therapy in Relapsed and Refractory Pediatric Acute Leukemia Patients. Blood, 2020, 136, 15-16.	0.6	0