Julie K Horton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8565016/publications.pdf Version: 2024-02-01

LULLE K HORTON

#	Article	IF	CITATIONS
1	Shining light on the response to repair intermediates in DNA of living cells. DNA Repair, 2020, 85, 102749.	2.8	9
2	Lysines in the lyase active site of DNA polymerase Î ² destabilize nonspecific DNA binding, facilitating searching and DNA gap recognition. Journal of Biological Chemistry, 2020, 295, 12181-12187.	3.4	9
3	Mitochondrial dysfunction and DNA damage accompany enhanced levels of formaldehyde in cultured primary human fibroblasts. Scientific Reports, 2020, 10, 5575.	3.3	18
4	Oxidative DNA Damage Modulates DNA Methylation Pattern in Human Breast Cancer 1 (BRCA1) Gene via the Crosstalk between DNA Polymerase β and a de novo DNA Methyltransferase. Cells, 2020, 9, 225.	4.1	18
5	Requirements for PARP-1 covalent crosslinking to DNA (PARP-1 DPC). DNA Repair, 2020, 90, 102850.	2.8	12
6	Histone H3 Lysine 56 Acetylation Enhances AP Endonuclease 1-Mediated Repair of AP Sites in Nucleosome Core Particles. Biochemistry, 2019, 58, 3646-3655.	2.5	12
7	Eukaryotic Base Excision Repair: New Approaches Shine Light on Mechanism. Annual Review of Biochemistry, 2019, 88, 137-162.	11.1	123
8	Repair pathway for PARP-1 DNA-protein crosslinks. DNA Repair, 2019, 73, 71-77.	2.8	43
9	XRCC1 phosphorylation affects aprataxin recruitment and DNA deadenylation activity. DNA Repair, 2018, 64, 26-33.	2.8	13
10	Oxidized nucleotide insertion by pol \hat{l}^2 confounds ligation during base excision repair. Nature Communications, 2017, 8, 14045.	12.8	53
11	Role of the oxidized form of XRCC1 in protection against extreme oxidative stress. Free Radical Biology and Medicine, 2017, 107, 292-300.	2.9	18
12	XRCC1-mediated repair of strand breaks independent of PNKP binding. DNA Repair, 2017, 60, 52-63.	2.8	12
13	DNA polymerase β: A missing link of the base excision repair machinery in mammalian mitochondria. DNA Repair, 2017, 60, 77-88.	2.8	48
14	DNA polymerase β contains a functional nuclear localization signal at its N-terminus. Nucleic Acids Research, 2017, 45, 1958-1970.	14.5	13
15	Bisphenol A Promotes Cell Survival Following Oxidative DNA Damage in Mouse Fibroblasts. PLoS ONE, 2015, 10, e0118819.	2.5	49
16	DNA polymerase β-dependent cell survival independent of XRCC1 expression. DNA Repair, 2015, 26, 23-29.	2.8	20
17	Complementation of aprataxin deficiency by base excision repair enzymes. Nucleic Acids Research, 2015, 43, 2271-2281.	14.5	30
18	Enzymatic Activity Assays for Base Excision Repair Enzymes in Cell Extracts from Vertebrate Cells. Bio-protocol, 2015, 5, .	0.4	0

Julie K Horton

#	Article	IF	CITATIONS
19	Base Excision Repair Defects Invoke Hypersensitivity to PARP Inhibition. Molecular Cancer Research, 2014, 12, 1128-1139.	3.4	68
20	Suicidal cross-linking of PARP-1 to AP site intermediates in cells undergoing base excision repair. Nucleic Acids Research, 2014, 42, 6337-6351.	14.5	81
21	Preventing oxidation of cellular XRCC1 affects PARP-mediated DNA damage responses. DNA Repair, 2013, 12, 774-785.	2.8	40
22	Predicting Enhanced Cell Killing through PARP Inhibition. Molecular Cancer Research, 2013, 11, 13-18.	3.4	48
23	Strategic Combination of DNA-Damaging Agent and PARP Inhibitor Results in Enhanced Cytotoxicity. Frontiers in Oncology, 2013, 3, 257.	2.8	30
24	Increased PARP-1 Association with DNA in Alkylation Damaged, PARP-Inhibited Mouse Fibroblasts. Molecular Cancer Research, 2012, 10, 360-368.	3.4	61
25	Requirement for NBS1 in the S phase checkpoint response to DNA methylation combined with PARP inhibition. DNA Repair, 2011, 10, 225-234.	2.8	8
26	Coordination between Polymerase β and FEN1 Can Modulate CAG Repeat Expansion. Journal of Biological Chemistry, 2009, 284, 28352-28366.	3.4	100
27	XRCC1 and DNA polymerase β in cellular protection against cytotoxic DNA single-strand breaks. Cell Research, 2008, 18, 48-63.	12.0	190
28	ATR signaling mediates an S-phase checkpoint after inhibition of poly(ADP-ribose) polymerase activity. DNA Repair, 2007, 6, 742-750.	2.8	23
29	HMGB1 Is a Cofactor in Mammalian Base Excision Repair. Molecular Cell, 2007, 27, 829-841.	9.7	141
30	Hypersensitivity phenotypes associated with genetic and synthetic inhibitor-induced base excision repair deficiency. DNA Repair, 2007, 6, 530-543.	2.8	54
31	Poly(ADP-ribose) Polymerase Activity Prevents Signaling Pathways for Cell Cycle Arrest after DNA Methylating Agent Exposure. Journal of Biological Chemistry, 2005, 280, 15773-15785.	3.4	57
32	Involvement of poly(ADP-ribose) polymerase activity in regulating Chk1-dependent apoptotic cell death. DNA Repair, 2005, 4, 1111-1120.	2.8	29
33	Hypersensitivity of DNA polymerase \hat{l}^2 null mouse fibroblasts reflects accumulation of cytotoxic repair intermediates from site-specific alkyl DNA lesions. DNA Repair, 2003, 2, 27-48.	2.8	88
34	Involvement of DNA polymerase Î ² in protection against the cytotoxicity of oxidative DNA damage. DNA Repair, 2002, 1, 317-333.	2.8	73
35	The lyase activity of the DNA repair protein β-polymerase protects from DNA-damage-induced cytotoxicity. Nature, 2000, 405, 807-810.	27.8	316