Xin-Guang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8564967/publications.pdf

Version: 2024-02-01

		1163117	1125743	
32	190	8	13	
papers	citations	h-index	g-index	
32	32	32	82	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Dynamics of the Nonlinear Timoshenko System with Variable Delay. Applied Mathematics and Optimization, 2021, 83, 297-326.	1.6	13
2	Dynamics of 2D Incompressible Non-autonomous Navier–Stokes Equations on Lipschitz-like Domains. Applied Mathematics and Optimization, 2021, 83, 2129-2183.	1.6	6
3	Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete and Continuous Dynamical Systems, 2021, 41, 3343.	0.9	5
4	Pullback dynamics for the 3â€D incompressible Navier–Stokes equations with damping and delay. Mathematical Methods in the Applied Sciences, 2021, 44, 7031-7047.	2.3	1
5	Dynamical behaviors of non-autonomous fractional FitzHugh-Nagumo system driven by additive noise in unbounded domains. Frontiers of Mathematics in China, 2021, 16, 59-93.	0.7	3
6	Asymptotic stability of 3D Navier–Stokes equations with damping. Applied Mathematics Letters, 2021, 116, 107012.	2.7	6
7	Pullback dynamics of a 3D modified Navier-Stokes equations with double delays. Electronic Research Archive, 2021, 29, 4137-4157.	0.9	2
8	Dynamics for the 3D incompressible Navier-Stokes equations with double time delays and damping. Discrete and Continuous Dynamical Systems - Series B, 2021, .	0.9	1
9	Remarks on nontrivial pullback attractors of the $2\hat{a} \in D$ Navier $\hat{a} \in S$ tokes equations with delays. Mathematical Methods in the Applied Sciences, 2020, 43, 1892-1900.	2.3	1
10	The fractal dimension of pullback attractors for the 2D Navier–Stokes equations with delay. Mathematical Methods in the Applied Sciences, 2020, 43, 9637-9653.	2.3	3
11	Dynamics of a 3D Benjamin–Bona–Mahony equations with sublinear operator. Asymptotic Analysis, 2020, 121, 75-100.	0.5	2
12	The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28, 1395-1418.	0.9	15
13	Uniform boundness of global solutions for a <i>n</i> dimensional spherically symmetric combustion model. Applicable Analysis, 2019, 98, 2688-2722.	1.3	2
14	Dynamics and stability of the 3D Brinkman–Forchheimer equation with variable delay (I). Asymptotic Analysis, 2019, 113, 167-194.	0.5	12
15	Using Convolutional Neural Networks to Detect and Extract Retinal Blood Vessels in Fundoscopic Images. , 2019, , .		3
16	Global attractors for a nonlinear one-dimensional compressible viscous micropolar fluid model. Zeitschrift Fur Angewandte Mathematik Und Physik, 2019, 70, 1.	1.4	2
17	Pullback dynamics of 3D Navier–Stokes equations with nonlinear viscosity. Nonlinear Analysis: Real World Applications, 2019, 48, 337-361.	1.7	9
18	Pullback Attractors for a 3D Non-autonomous Navier-Stokes-Voight Equations. Acta Mathematicae Applicatae Sinica, 2019, 35, 737-752.	0.7	3

#	Article	IF	Citations
19	Exponential stability of a mildly dissipative viscoelastic plate equation with variable density. Mathematical Methods in the Applied Sciences, 2019, 42, 733-741.	2.3	1
20	Regularity of uniform attractor for 3D non-autonomous Navier–Stokes–Voigt equation. Applied Mathematics and Computation, 2018, 334, 11-29.	2.2	7
21	Long-time dynamics for a nonlinear Timoshenko system with delay. Applicable Analysis, 2017, 96, 606-625.	1.3	32
22	Uniform attractors for a nonautonomous extensible plate equation with a strong damping. Mathematical Methods in the Applied Sciences, 2017, 40, 3479-3492.	2.3	5
23	Pullback attractors of 2D Navier–Stokes equations with weak damping, distributed delay, and continuous delay. Mathematical Methods in the Applied Sciences, 2016, 39, 3186-3203.	2.3	3
24	Uniform attractor for nonâ€autonomous Boussinesqâ€type equation with critical nonlinearity. Mathematical Methods in the Applied Sciences, 2016, 39, 3075-3087.	2.3	2
25	Pullback attractors of 2D Navier-Stokes equations with weak damping and continuous delay. Boundary Value Problems, 2015, 2015, .	0.7	0
26	A Beale–Kato–Majda criterion for the 3D viscous magnetohydrodynamic equations. Mathematical Methods in the Applied Sciences, 2015, 38, 701-707.	2.3	2
27	Upper Semicontinuity of Pullback Attractors for the 3D Nonautonomous Benjamin-Bona-Mahony Equations. Scientific World Journal, The, 2014, 2014, 1-9.	2.1	0
28	Upper Semicontinuous Property of Uniform Attractors for the 2D Nonautonomous Navier-Stokes Equations with Damping. Abstract and Applied Analysis, 2013, 2013, 1-11.	0.7	1
29	Blowâ€up criteria of smooth solutions to the 3D Boussinesq equations. Mathematical Methods in the Applied Sciences, 2012, 35, 278-285.	2.3	13
30	Averaging of a 3D Navier–Stokes–Voight equation with singularly oscillating forces. Nonlinear Analysis: Real World Applications, 2012, 13, 893-904.	1.7	20
31	Exponential stability for a Timoshenko-type system with history. Journal of Mathematical Analysis and Applications, 2011, 380, 299-312.	1.0	14
32	Large Time Behavior of Spherically Symmetrical Micropolar Fluid on Unbounded Domain. Applied Mathematics and Optimization, 0 , 1 .	1.6	1