
Matthias Merkenschlager

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8564604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cohesin-dependence of neuronal gene expression relates to chromatin loop length. ELife, 2022, 11, .	2.8	40
2	Epigenetic changes induced by in utero dietary challenge result in phenotypic variability in successive generations of mice. Nature Communications, 2022, 13, 2464.	5.8	13
3	The order and logic of CD4 versus CD8 lineage choice and differentiation in mouse thymus. Nature Communications, 2021, 12, 99.	5.8	21
4	Neuronal genes deregulated in Cornelia de Lange Syndrome respond to removal and re-expression of cohesin. Nature Communications, 2021, 12, 2919.	5.8	18
5	Editorial overview: Genome architecture and expression. Current Opinion in Genetics and Development, 2020, 61, iii-vi.	1.5	0
6	Identifying proteins bound to native mitotic ESC chromosomes reveals chromatin repressors are important for compaction. Nature Communications, 2020, 11, 4118.	5.8	26
7	STATegra, a comprehensive multi-omics dataset of B-cell differentiation in mouse. Scientific Data, 2019, 6, 256.	2.4	26
8	Building gene regulatory networks from scATAC-seq and scRNA-seq using Linked Self Organizing Maps. PLoS Computational Biology, 2019, 15, e1006555.	1.5	56
9	Selective deployment of transcription factor paralogs with submaximal strength facilitates gene regulation in the immune system. Nature Immunology, 2019, 20, 1372-1380.	7.0	17
10	Towards a Better Understanding of Cohesin Mutations in AML. Frontiers in Oncology, 2019, 9, 867.	1.3	26
11	Epigenomic signatures underpin the axonal regenerative ability of dorsal root ganglia sensory neurons. Nature Neuroscience, 2019, 22, 1913-1924.	7.1	71
12	Feedforward regulation of Myc coordinates lineage-specific with housekeeping gene expression during B cell progenitor cell differentiation. PLoS Biology, 2019, 17, e2006506.	2.6	8
13	Chromatinization of Escherichia coli with archaeal histones. ELife, 2019, 8, .	2.8	23
14	Three-dimensional genome organization in normal and malignant haematopoiesis. Current Opinion in Hematology, 2018, 25, 323-328.	1.2	8
15	Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nature Immunology, 2018, 19, 932-941.	7.0	175
16	Allele-specific analysis of cell fusion-mediated pluripotent reprograming reveals distinct and predictive susceptibilities of human X-linked genes to reactivation. Genome Biology, 2017, 18, 2.	3.8	14
17	Visualizing Changes in Cdkn1c Expression Links Early-Life Adversity to Imprint Mis-regulation in Adults. Cell Reports, 2017, 18, 1090-1099.	2.9	43
18	Reconciling Epigenetic Memory and Transcriptional Responsiveness. Cell Systems, 2017, 4, 373-374.	2.9	0

#	Article	IF	CITATIONS
19	Topologically associating domains are ancient features that coincide with Metazoan clusters of extreme noncoding conservation. Nature Communications, 2017, 8, 441.	5.8	147
20	Analysis of Cohesin Function in Gene Regulation and Chromatin Organization in Interphase. Methods in Molecular Biology, 2017, 1515, 197-216.	0.4	0
21	A high-resolution map of transcriptional repression. ELife, 2017, 6, .	2.8	47
22	CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation. Annual Review of Genomics and Human Genetics, 2016, 17, 17-43.	2.5	438
23	MicroRNAs of the miR-290–295 Family Maintain Bivalency in Mouse Embryonic Stem Cells. Stem Cell Reports, 2016, 6, 635-642.	2.3	24
24	Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming. Nature Communications, 2016, 7, 12354.	5.8	19
25	Cohesin's role in pluripotency and reprogramming. Cell Cycle, 2016, 15, 324-330.	1.3	7
26	Direct interaction of Ikaros and Foxp1 modulates expression of the G protein-coupled receptor G2A in B-lymphocytes and acute lymphoblastic leukemia. Oncotarget, 2016, 7, 65923-65936.	0.8	8
27	Initiation and maintenance of pluripotency gene expression in the absence of cohesin. Genes and Development, 2015, 29, 23-38.	2.7	32
28	Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin. Genome Research, 2015, 25, 504-513.	2.4	149
29	microRNAs Regulate Cell-to-Cell Variability of Endogenous Target Gene Expression in Developing Mouse Thymocytes. PLoS Genetics, 2015, 11, e1005020.	1.5	22
30	Extensive microRNA-mediated crosstalk between lncRNAs and mRNAs in mouse embryonic stem cells. Genome Research, 2015, 25, 655-666.	2.4	95
31	Jarid2 Coordinates Nanog Expression and PCP/Wnt Signaling Required for Efficient ESC Differentiation and Early Embryo Development. Cell Reports, 2015, 12, 573-586.	2.9	43
32	microRNAs calibrate T cell responses by regulating mTOR. Oncotarget, 2015, 6, 34059-34060.	0.8	4
33	microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells. Journal of Experimental Medicine, 2014, 211, 2281-2295.	4.2	57
34	Jarid2 Links MicroRNA and Chromatin in Th17 Cells. Immunity, 2014, 40, 855-856.	6.6	7
35	Data integration in the era of omics: current and future challenges. BMC Systems Biology, 2014, 8, 11.	3.0	300
36	MicroRNA Targeting of CoREST Controls Polarization of Migrating Cortical Neurons. Cell Reports, 2014, 7, 1168-1183.	2.9	65

#	Article	IF	CITATIONS
37	microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells. Journal of Cell Biology, 2014, 207, 2072OIA191.	2.3	0
38	Condensin, cohesin and the control of chromatin states. Current Opinion in Genetics and Development, 2013, 23, 204-211.	1.5	40
39	Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments. Genome Research, 2013, 23, 2066-2077.	2.4	282
40	Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B–cell differentiation. Blood, 2013, 121, 1769-1782.	0.6	102
41	Different Roles for Tet1 and Tet2 Proteins in Reprogramming-Mediated Erasure of Imprints Induced by EGC Fusion. Molecular Cell, 2013, 49, 1176.	4.5	4
42	Cohesin at active genes: a unifying theme for cohesin and gene expression from model organisms to humans. Current Opinion in Cell Biology, 2013, 25, 327-333.	2.6	111
43	Interrogating the relationship between transcription factor complex binding and transcriptional activation. Experimental Hematology, 2013, 41, S19.	0.2	0
44	Different Roles for Tet1 and Tet2 Proteins in Reprogramming-Mediated Erasure of Imprints Induced by EGC Fusion. Molecular Cell, 2013, 49, 1023-1033.	4.5	86
45	CTCF and Cohesin: Linking Gene Regulatory Elements with Their Targets. Cell, 2013, 152, 1285-1297.	13.5	323
46	DNA Synthesis Is Required for Reprogramming Mediated by Stem Cell Fusion. Cell, 2013, 152, 873-883.	13.5	64
47	Focus on epigenetic control of host defence: editorial. Immunology, 2013, 139, 275-276.	2.0	1
48	A Unilateral Negative Feedback Loop Between <i>miR-200</i> microRNAs and Sox2/E2F3 Controls Neural Progenitor Cell-Cycle Exit and Differentiation. Journal of Neuroscience, 2012, 32, 13292-13308.	1.7	98
49	Cohesin, CTCF and lymphocyte antigen receptor locus rearrangement. Trends in Immunology, 2012, 33, 153-159.	2.9	31
50	Cohesin and chromatin organisation. Current Opinion in Genetics and Development, 2012, 22, 93-100.	1.5	37
51	A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation. Nature, 2011, 476, 467-471.	13.7	217
52	Embryonic stem cell–derived hemangioblasts remain epigenetically plastic and require PRC1 to prevent neural gene expression. Blood, 2011, 117, 83-87.	0.6	18
53	Using heterokaryons to understand pluripotency and reprogramming. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2260-2265.	1.8	22
54	Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription. Nature Cell Biology, 2011, 13, 1450-1456.	4.6	67

#	Article	IF	CITATIONS
55	lkaros in immune receptor signaling, lymphocyte differentiation, and function. FEBS Letters, 2010, 584, 4910-4914.	1.3	56
56	Differences in the epigenetic and reprogramming properties of pluripotent and extra-embryonic stem cells implicate chromatin remodelling as an important early event in the developing mouse embryo. Epigenetics and Chromatin, 2010, 3, 1.	1.8	30
57	Fresh powder on Waddington's slopes. EMBO Reports, 2010, 11, 490-492.	2.0	4
58	Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature, 2010, 464, 852-857.	13.7	980
59	Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nature Cell Biology, 2010, 12, 618-624.	4.6	274
60	Dicer is required for Sertoli cell function and survival. International Journal of Developmental Biology, 2010, 54, 867-875.	0.3	74
61	Small RNAs Control Sodium Channel Expression, Nociceptor Excitability, and Pain Thresholds. Journal of Neuroscience, 2010, 30, 10860-10871.	1.7	152
62	MicroRNA miR-125a controls hematopoietic stem cell number. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14229-14234.	3.3	330
63	MicroRNA Loss Enhances Learning and Memory in Mice. Journal of Neuroscience, 2010, 30, 14835-14842.	1.7	276
64	PI3 kinase signalling blocks Foxp3 expression by sequestering Foxo factors. Journal of Experimental Medicine, 2010, 207, 1347-1350.	4.2	136
65	Cohesin: a global player in chromosome biology with local ties to gene regulation. Current Opinion in Genetics and Development, 2010, 20, 555-561.	1.5	53
66	An Early Developmental Role for miRNAs in the Maintenance of Extraembryonic Stem Cells in the Mouse Embryo. Developmental Cell, 2010, 19, 207-219.	3.1	80
67	ESCs Require PRC2 to Direct the Successful Reprogramming of Differentiated Cells toward Pluripotency. Cell Stem Cell, 2010, 6, 547-556.	5.2	162
68	PI3 kinase signalling blocks Foxp3 expression by sequestering Foxo factors. Journal of Cell Biology, 2010, 190, i1-i1.	2.3	0
69	A Conserved Insulator That Recruits CTCF and Cohesin Exists between the Closely Related but Divergently Regulated Interleukin-3 and Granulocyte-Macrophage Colony-Stimulating Factor Genes. Molecular and Cellular Biology, 2009, 29, 1682-1693.	1.1	28
70	Dicer-Dependent MicroRNA Pathway Controls Invariant NKT Cell Development. Journal of Immunology, 2009, 183, 2506-2512.	0.4	82
71	A reappraisal of evidence for probabilistic models of allelic exclusion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 516-521.	3.3	11
72	Runx proteins regulate Foxp3 expression. Journal of Experimental Medicine, 2009, 206, 2329-2337.	4.2	88

#	Article	IF	CITATIONS
73	REST selectively represses a subset of RE1-containing neuronal genes in mouse embryonic stem cells. Development (Cambridge), 2009, 136, 715-721.	1.2	70
74	Is REST required for ESC pluripotency?. Nature, 2009, 457, E4-E5.	13.7	52
75	Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature, 2009, 460, 410-413.	13.7	472
76	IL4 blockade of inducible regulatory T cell differentiation: The role of Th2 cells, Gata3 and PU.1. Immunology Letters, 2009, 122, 37-43.	1.1	28
77	Chromosomes and expression mechanisms: life on the edge. Current Opinion in Genetics and Development, 2009, 19, 97-98.	1.5	2
78	Runx proteins regulate Foxp3 expression. Journal of Cell Biology, 2009, 187, i3-i3.	2.3	1
79	Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a. Epigenetics and Chromatin, 2008, 1, 2.	1.8	76
80	Long-range regulation of cytokine gene expression. Current Opinion in Immunology, 2008, 20, 272-280.	2.4	22
81	RNAi and chromatin in T cell development and function. Current Opinion in Immunology, 2008, 20, 131-138.	2.4	18
82	Condensin goes with the family but not with the flow. Genome Biology, 2008, 9, 236.	13.9	3
83	Cohesins Functionally Associate with CTCF on Mammalian Chromosome Arms. Cell, 2008, 132, 422-433.	13.5	800
84	Dicer Ablation Affects Antibody Diversity and Cell Survival in the B Lymphocyte Lineage. Cell, 2008, 132, 860-874.	13.5	547
85	T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7797-7802.	3.3	747
86	Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14082-14087.	3.3	453
87	Directing T cell differentiation and function with small molecule inhibitors. Cell Cycle, 2008, 7, 2296-2298.	1.3	13
88	Podocyte-Selective Deletion of Dicer Induces Proteinuria and Glomerulosclerosis. Journal of the American Society of Nephrology: JASN, 2008, 19, 2159-2169.	3.0	332
89	Heterokaryon-Based Reprogramming of Human B Lymphocytes for Pluripotency Requires Oct4 but Not Sox2. PLoS Genetics, 2008, 4, e1000170.	1.5	115
90	Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1949-1954.	3.3	315

#	Article	IF	CITATIONS
91	Ikaros DNA-Binding Proteins as Integral Components of B Cell Developmental-Stage-Specific Regulatory Circuits. Immunity, 2007, 26, 335-344.	6.6	183
92	The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biology, 2007, 8, R169.	13.9	68
93	A role for Dicer in immune regulation. Journal of Experimental Medicine, 2006, 203, 2519-2527.	4.2	490
94	Acquisition and extinction of gene expression programs are separable events in heterokaryon reprogramming. Journal of Cell Science, 2006, 119, 2065-2072.	1.2	52
95	Correction of severe anaemia using immuno-regulated gene therapy is achieved by restoring the early erythroblast compartment. British Journal of Haematology, 2006, 132, 608-614.	1.2	2
96	Chromatin signatures of pluripotent cell lines. Nature Cell Biology, 2006, 8, 532-538.	4.6	1,213
97	Chromatin structure and gene regulation in T cell development and function. Current Opinion in Immunology, 2006, 18, 143-151.	2.4	39
98	Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. Journal of Cell Science, 2006, 119, 132-140.	1.2	276
99	A role for Dicer in immune regulation. Journal of Cell Biology, 2006, 175, i7-i7.	2.3	0
100	Gene Expression: Growing up together may help genes go their separate ways. European Journal of Human Genetics, 2005, 13, 993-994.	1.4	0
101	T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. Journal of Experimental Medicine, 2005, 201, 1367-1373.	4.2	489
102	The reorganisation of constitutive heterochromatin in differentiating muscle requires HDAC activity. Experimental Cell Research, 2005, 310, 344-356.	1.2	77
103	Gene silencing in lymphocyte development. Seminars in Immunology, 2005, 17, 103.	2.7	0
104	Centromeric Repositioning of Coreceptor Loci Predicts Their Stable Silencing and the CD4/CD8 Lineage Choice. Journal of Experimental Medicine, 2004, 200, 1437-1444.	4.2	44
105	A Dynamic Switch in the Replication Timing of Key Regulator Genes in Embryonic Stem Cells upon Neural Induction. Cell Cycle, 2004, 3, 1619-1624.	1.3	77
106	The regulated long-term delivery of therapeutic proteins by using antigen-specific B lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16298-16303.	3.3	13
107	Dynamic assembly of silent chromatin during thymocyte maturation. Nature Genetics, 2004, 36, 502-506.	9.4	125
108	Histone hypomethylation is an indicator of epigenetic plasticity in quiescent lymphocytes. EMBO Journal, 2004, 23, 4462-4472.	3.5	100

#	Article	IF	CITATIONS
109	Nuclear repositioning marks the selective exclusion of lineage-inappropriate transcription factor loci during T helper cell differentiation. European Journal of Immunology, 2004, 34, 3604-3613.	1.6	111
110	A dynamic switch in the replication timing of key regulator genes in embryonic stem cells upon neural induction. Cell Cycle, 2004, 3, 1645-50.	1.3	46
111	Heritable gene silencing in lymphocytes delays chromatid resolution without affecting the timing of DNA replication. Nature Cell Biology, 2003, 5, 668-674.	4.6	91
112	Upstream of Ikaros. Trends in Immunology, 2003, 24, 567-570.	2.9	22
113	Comparison of the frequency of peptide-specific cytotoxic T lymphocytes restricted by self- and allo-MHC following in vitro T cell priming. International Immunology, 2002, 14, 1283-1290.	1.8	2
114	The Developmentally Regulated Expression of Twisted Gastrulation Reveals a Role for Bone Morphogenetic Proteins in the Control of T Cell Development. Journal of Experimental Medicine, 2002, 196, 163-171.	4.2	75
115	Gene silencing, cell fate and nuclear organisation. Current Opinion in Genetics and Development, 2002, 12, 193-197.	1.5	84
116	Nuclear organisation and gene expression. Current Opinion in Cell Biology, 2002, 14, 372-376.	2.6	51
117	Evolutionary conservation, developmental expression, and genomic mapping of mammalian Twisted gastrulation. Mammalian Genome, 2001, 12, 554-560.	1.0	27
118	The tight interallelic positional coincidence that distinguishes T-cell receptor Jalpha usage does not result from homologous chromosomal pairing during ValphaJalpha rearrangement. EMBO Journal, 2001, 20, 4717-4729.	3.5	40
119	Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nature Immunology, 2001, 2, 848-854.	7.0	179
120	Expression of α- and β-globin genes occurs within different nuclear domains in haemopoietic cells. Nature Cell Biology, 2001, 3, 602-606.	4.6	139
121	Down-regulation of TDT transcription in CD4+CD8+ thymocytes by Ikaros proteins in direct competition with an Ets activator. Genes and Development, 2001, 15, 1817-1832.	2.7	136
122	Sensory Adaptation in Naive Peripheral CD4 T Cells. Journal of Experimental Medicine, 2001, 194, 1253-1262.	4.2	147
123	Different doses of agonistic ligand drive the maturation of functional CD4 and CD8 T cells from immature precursors. European Journal of Immunology, 2000, 30, 371-381.	1.6	12
124	Recessive expression of the H2A-controlled immune response phenotype depends critically on antigen dose. Immunology, 2000, 99, 221-228.	2.0	3
125	Establishment of efficient reaggregation culture system for gene transfection into immature T cells by retroviral vectors. Immunology Letters, 2000, 71, 61-66.	1.1	14
126	Intrathymic deletion of MHC class I-restricted cytotoxic T cell precursors by constitutive cross-presentation of exogenous antigen. European Journal of Immunology, 1999, 29, 1477-1486.	1.6	22

#	Article	IF	CITATIONS
127	Dynamic Repositioning of Genes in the Nucleus of Lymphocytes Preparing for Cell Division. Molecular Cell, 1999, 3, 207-217.	4.5	376
128	Mechanisms of Transcriptional Regulation in Lymphocyte Progenitors: Insight from an Analysis of the Terminal Transferase Promoter. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 87-98.	2.0	6
129	Rational primer design greatly improves differential display-PCR (DD- PCR). Nucleic Acids Research, 1997, 25, 2239-2240.	6.5	32
130	How Many Thymocytes Audition for Selection?. Journal of Experimental Medicine, 1997, 186, 1149-1158.	4.2	206
131	Association of Transcriptionally Silent Genes with Ikaros Complexes at Centromeric Heterochromatin. Cell, 1997, 91, 845-854.	13.5	724
132	Selection-induced gene expression in thymocytes. Genetical Research, 1997, 70, 79-89.	0.3	1
133	Tracing interactions of thymocytes with individual stromal cell partners. European Journal of Immunology, 1996, 26, 892-896.	1.6	35
134	Lymphoproliferative disorders in IL-7 transgenic mice: expansion of immature B cells which retain macrophage potential. International Immunology, 1995, 7, 415-423.	1.8	74
135	In vitro construction of graded thymus chimeras. Journal of Immunological Methods, 1994, 171, 177-188.	0.6	11
136	Selective manipulation of the human T-cell receptor repertoire expressed by thymocytes in organ culture Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 4255-4259.	3.3	9
137	Confusion over CD45 isoform. Nature, 1991, 352, 28-28.	13.7	8
138	Allorecognition of HLA-DR and -DQ transfectants by human CD45RA and CD45R0 CD4 T cells: Repertoire analysis and activation requirements. European Journal of Immunology, 1991, 21, 79-88.	1.6	29
139	CD45 isoform switching precedes the activation-driven death of human thymocytes by apoptosis. International Immunology, 1991, 3, 1-7.	1.8	47
140	Evidence for differential expression of CD45 isoforms by precursors for memory-dependent and independent cytotoxic responses: human CD8 memory CTLp selectively express CD45R0 (UCHL1). International Immunology, 1989, 1, 450-459.	1.8	131
141	Memory T cells. Nature, 1989, 341, 392-392.	13.7	11
142	Limiting dilution analysis of proliferative responses in human lymphocyte populations defined by the monoclonal antibody UCHL1: implications for differential CD45 expression in T cell memory formation. European Journal of Immunology, 1988, 18, 1653-1662.	1.6	281
143	Progress in T cell biology. Immunology Letters, 1987, 16, 171-177.	1.1	8
144	B cell growth and differentiation induced by supernatants of transformed epithelial cell lines. European Journal of Immunology, 1986, 16, 1017-1019.	1.6	51