Chun Ju Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8563960/publications.pdf

Version: 2024-02-01

516710 940533 3,168 16 16 16 citations h-index g-index papers 16 16 16 6573 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biology, 2011, 13, 317-323.	10.3	674
2	ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nature Cell Biology, 2008, 10, 138-148.	10.3	590
3	EZH2 Promotes Expansion of Breast Tumor Initiating Cells through Activation of RAF1- \hat{l}^2 -Catenin Signaling. Cancer Cell, 2011, 19, 86-100.	16.8	371
4	The role of EZH2 in tumour progression. British Journal of Cancer, 2012, 106, 243-247.	6.4	307
5	Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature, 2008, 453, 529-533.	27.8	223
6	Down-regulation of Myeloid Cell Leukemia-1 through Inhibiting Erk/Pin 1 Pathway by Sorafenib Facilitates Chemosensitization in Breast Cancer. Cancer Research, 2008, 68, 6109-6117.	0.9	167
7	NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell, 2006, 9, 367-378.	16.8	155
8	PTEN Nuclear Localization Is Regulated by Oxidative Stress and Mediates p53-Dependent Tumor Suppression. Molecular and Cellular Biology, 2008, 28, 3281-3289.	2.3	128
9	MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. Journal of Clinical Investigation, 2014, 124, 3093-3106.	8.2	99
10	Leptin–STAT3–G9a Signaling Promotes Obesity-Mediated Breast Cancer Progression. Cancer Research, 2015, 75, 2375-2386.	0.9	98
11	PTEN Regulates Mdm2 Expression through the P1 Promoter. Journal of Biological Chemistry, 2004, 279, 29841-29848.	3.4	85
12	IKKα Activation of NOTCH Links Tumorigenesis via FOXA2 Suppression. Molecular Cell, 2012, 45, 171-184.	9.7	83
13	Activation of FOXO3a Is Sufficient to Reverse Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase Kinase Inhibitor Chemoresistance in Human Cancer. Cancer Research, 2010, 70, 4709-4718.	0.9	70
14	BikDD Eliminates Breast Cancer Initiating Cells and Synergizes with Lapatinib for Breast Cancer Treatment. Cancer Cell, 2011, 20, 341-356.	16.8	67
15	Retinoic acid directs breast cancer cell state changes through regulation of TET2-PKCζ pathway. Oncogene, 2017, 36, 3193-3206.	5 . 9	31
16	Dual degradation signals destruct GLI1: AMPK inhibits GLI1 through \hat{I}^2 -TrCP-mediated proteasome degradation. Oncotarget, 2017, 8, 49869-49881.	1.8	20