Tadanori Hashimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8563855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dehydrocyclization-cracking of soybean oil using β-zeolite-Al2O3 hierarchical composite-supported Pt, Pd, CoMo, and NiMo sulfide catalysts. Biomass Conversion and Biorefinery, 2023, 13, 10711-10722.	4.6	1
2	Catalytic cracking of low-density polyethylene over zeolite-containing hierarchical two-layered catalyst with different mesopore size using Curie point pyrolyzer. Fuel Processing Technology, 2022, 227, 107106.	7.2	11
3	Effect of Type of Matrix on Formation of Aromatics by Cracking and Dehydrocyclization of <i>n</i> -Pentane Using ZnZSM-5 Metal Oxide Hierarchical Composite Catalysts. Journal of the Japan Petroleum Institute, 2022, 65, 27-35.	0.6	2
4	Thermal Behavior of Crystalline Minerals in Argonne Premium Coals under Air and Argon Atmospheres: Comparison between Bituminous, Sub-bituminous, and Brown Coals. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2022, 101, 36-42.	0.2	1
5	Effect of matrix on aromatics production by cracking and dehydrocyclization of n-pentane using Ga ion-exchanged ZSM-5-alumina composite catalysts. Fuel Processing Technology, 2021, 213, 106679.	7.2	27
6	Analysis of Thermal Behavior of Crystalline Minerals in Bituminous Coal Samples under Air and Argon Atmospheres. ACS Omega, 2021, 6, 1197-1204.	3.5	2
7	Effects of the addition of CeO ₂ on the steam reforming of ethanol using novel carbon-Al ₂ O ₃ and carbon-ZrO ₂ composite-supported Co catalysts. RSC Advances, 2021, 11, 8530-8539.	3.6	4
8	Dehydrocyclization–cracking of methyl oleate by Pt catalysts supported on a ZnZSM-5–Al ₂ O ₃ hierarchical composite. RSC Advances, 2021, 11, 19864-19873.	3.6	7
9	Effects of Zn Addition into ZSM-5 Zeolite on Dehydrocyclization-Cracking of Soybean Oil Using Hierarchical Zeolite-Al ₂ O ₃ Composite-Supported Pt/NiMo Sulfided Catalysts. ACS Omega, 2021, 6, 5509-5517.	3.5	9
10	Aromatics formation by dehydrocyclization-cracking of methyl oleate using ZnZSM-5-alumina composite-supported NiMo sulfide catalysts. Fuel, 2021, 289, 119885.	6.4	10
11	Preparation of novel zeolite-containing hierarchical two-layered catalysts with large mesopores by gel skeletal reinforcement and their reactivities in catalytic cracking of n-dodecane. Journal of Porous Materials, 2021, 28, 1935.	2.6	2
12	Aromatics formation by cracking and dehydrocyclization of n-hexane using Zn ion-exchanged ZSM-5–Al2O3 hierarchical composite catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 401-417.	1.7	6
13	Development of Ag and Ag alloys-precipitated Ag2O-TeO2 glass and Ag2O-TeO2 glass/stainless steel reference electrodes for pH sensors. Sensors and Actuators B: Chemical, 2021, 348, 130540.	7.8	5
14	Preparation of Î ² -zeolite mixed catalysts using alumina and titania matrices modified by silication of gel skeletal reinforcement and their reactivity for catalytic cracking of n-dodecane. Applied Catalysis A: General, 2021, 610, 117959.	4.3	4
15	Steam reforming of ethanol using novel carbon-oxide composite-supported Ni, Co and Fe catalysts. Fuel Processing Technology, 2020, 197, 106203.	7.2	18
16	Estimation of Catalytic Cracking of Vacuum Gas Oil by a Y Zeolite-Containing Two-Layered Catalyst and a Novel Three-Layered Hierarchical Catalyst Using a Curie Point Pyrolyzer Method. Energy & Fuels, 2020, 34, 7448-7454.	5.1	8
17	Catalytic cracking of C12-C32 hydrocarbons by hierarchical β- and Y-zeolite-containing mesoporous silica and silica-alumina using Curie point pyrolyzer. Journal of Analytical and Applied Pyrolysis, 2020, 150, 104876.	5.5	7
18	Effects of a Matrix on Formation of Aromatic Compounds by Dehydrocyclization of <i>n</i> -Pentane Using ZnZSM-5–Al ₂ O ₃ Composite Catalysts. ACS Omega, 2020, 5, 11160-11166.	3.5	20

#	Article	IF	CITATIONS
19	Preparation of hierarchical catalysts with the simultaneous generation of microporous zeolite using a template and large mesoporous silica by gel skeletal reinforcement and their reactivity in the catalytic cracking of <i>n</i> -dodecane. Catalysis Science and Technology, 2019, 9, 3614-3618.	4.1	5
20	Effects of types of zeolite and oxide and preparation methods on dehydrocyclization-cracking of soybean oil using hierarchical zeolite-oxide composite-supported Pt/NiMo sulfided catalysts. Fuel Processing Technology, 2019, 194, 106109.	7.2	22
21	Effect of heat-treatment on the pH sensitivity of stainless-steel electrodes as pH sensors. Heliyon, 2019, 5, e01239.	3.2	5
22	Catalytic cracking of soybean oil by ZSM-5 zeolite-containing silica-aluminas with three layered micro-meso-meso-structure. Catalysis Today, 2018, 303, 123-129.	4.4	27
23	Effect of glass former (B2O3, SiO2, GeO2 and P2O5) addition to Fe2O3-Bi2O3 glass on pH responsivity. Sensors and Actuators B: Chemical, 2018, 257, 807-814.	7.8	8
24	Effects of Pt-loading on Formation and Visible Light-Induced Photocatalytic Activity of Bismuth Titanate. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2018, 97, 70-76.	0.2	0
25	Preparation of Silica, Alumina, Titania, and Zirconia with Different Pore Sizes Using Sol–Gel Method and Their Properties as Matrices in Catalytic Cracking. Industrial & Engineering Chemistry Research, 2018, 57, 14394-14405.	3.7	11
26	Hydrogenation of Carbon Monoxide in the Presence of Solvent Using Novel Carbon–Oxide Composite Supported Cobalt and Iron Catalysts. Journal of the Japan Petroleum Institute, 2018, 61, 51-58.	0.6	2
27	Dehydrocyclization-cracking reaction of soybean oil using zeolite-metal oxide composite-supported PtNiMo sulfided catalysts. Fuel Processing Technology, 2017, 161, 17-22.	7.2	19
28	Preparation and characterization of zeolite-containing silica-aluminas with three layered micro-meso-meso-structure and their reactivity for catalytic cracking of soybean oil using Curie point pyrolyzer. Fuel Processing Technology, 2017, 161, 8-16.	7.2	21
29	Catalytic Cracking of Soybean Oil Using Zeolite-containing Microporous and Mesoporous Mixed Catalysts with Curie Point Pyrolyzer. Journal of the Japan Petroleum Institute, 2016, 59, 184-196.	0.6	11
30	Preparation and photocatalytic activity of porous Bi2O3 polymorphisms. International Journal of Hydrogen Energy, 2016, 41, 7388-7392.	7.1	35
31	pH Sensors Using 3d-Block Metal Oxide-Coated Stainless Steel Electrodes. Electrochimica Acta, 2016, 220, 699-704.	5.2	12
32	Preparation of SiO2 and SiO2–Al2O3 catalysts by gel skeletal reinforcement using hexamethyldisiloxane (HMDS) and acetic anhydride and aluminum tri-sec-butoxide (ASB) systems and elucidation of their catalytic cracking properties as matrices. Microporous and Mesoporous Materials, 2016, 233, 163-170.	4.4	15
33	Catalytic cracking reaction of vacuum gas oil and atmospheric residue by zeolite-containing microporous and mesoporous composites using Curie point pyrolyzer. Fuel Processing Technology, 2016, 142, 337-344.	7.2	23
34	Preparation and properties of Sol–Gel derived CuFeO ₂ thin films by dip-coating technique. Journal of the Ceramic Society of Japan, 2015, 123, 448-451.	1.1	3
35	Drastic Dependence of the pH Sensitivity of Fe2O3-Bi2O3-B2O3 Hydrophobic Glasses with Composition. Materials, 2015, 8, 8624-8629.	2.9	6
36	Catalytic Cracking of VGO by Zeolite–kaolin Mixed Catalysts Using Curie Point Pyrolyzer. Journal of the Japan Petroleum Institute, 2015, 58, 169-175.	0.6	8

#	Article	IF	CITATIONS
37	Preparation of Alumina-supported Cobalt–molybdenum Catalysts by Sol-gel Method and Hydrodesulfurization Activities. Journal of the Japan Petroleum Institute, 2015, 58, 103-109.	0.6	Ο
38	Catalytic cracking of soybean oil by hierarchical zeolite containing mesoporous silica-aluminas using a Curie point pyrolyzer. Journal of Molecular Catalysis A, 2015, 396, 310-318.	4.8	38
39	Hydrothermal gasification of phenol water on novel carbon-supported Ni catalysts prepared by the sol–gel method using tartaric acid and alminum tri-sec-butoxide. Fuel Processing Technology, 2015, 136, 34-40.	7.2	11
40	Effects of Types of Metal Oxides on Hydrothermal Gasification of Phenol over Novel Metal Oxide–carbon Composite Supported Ni Catalysts Prepared by Sol-gel Method. Journal of the Japan Petroleum Institute, 2015, 58, 302-311.	0.6	5
41	Fe2O3-Bi2O3-B2O3 glasses as lithium-free nonsilicate pH responsive glasses – Compatibility between pH responsivity and hydrophobicity. Materials Research Bulletin, 2014, 50, 385-391.	5.2	8
42	Preparation of amorphous silica-alumina using polyethylene glycol and its role for matrix in catalytic cracking of n-dodecane. Applied Catalysis A: General, 2014, 478, 58-65.	4.3	15
43	Hydrocracking of soybean oil using zeolite–alumina composite supported NiMo catalysts. Fuel, 2014, 134, 611-617.	6.4	66
44	Catalytic Cracking of VGO by Hierarchical Y Zeolite-containing Mesoporous Silica–Alumina Catalysts Using Curie Point Pyrolyzer. Journal of the Japan Petroleum Institute, 2014, 57, 34-46.	0.6	13
45	Hydrocracking of 1-methylnaphthalene/decahydronaphthalene mixture catalyzed by zeolite-alumina composite supported NiMo catalysts. Fuel Processing Technology, 2013, 116, 222-227.	7.2	49
46	Hydrothermal Gasification of Phenol Water on Novel Carbon-Supported Ni Catalysts Prepared by the Sol-Gel Method Using PEG. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2013, 92, 687-694.	0.2	6
47	Large Mesopore Generation in an Amorphous Silica-Alumina by Controlling the Pore Size with the Gel Skeletal Reinforcement and Its Application to Catalytic Cracking. Catalysts, 2012, 2, 368-385.	3.5	25
48	Effect of Sb ₂ O ₃ addition on photoluminescence properties of zinc phosphate and borate glasses. Journal of the Ceramic Society of Japan, 2012, 120, 436-437.	1.1	2
49	Catalytic cracking of VGO by hierarchical ZSM-5 zeolite containing mesoporous silica–aluminas using a Curie point pyrolyzer. Catalysis Communications, 2012, 28, 163-167.	3.3	39
50	Preparation of hierarchical β and Y zeolite-containing mesoporous silica–aluminas and their properties for catalytic cracking of n-dodecane. Journal of Catalysis, 2012, 295, 81-90.	6.2	75
51	Pore Size Control of a Novel Amorphous Silica-Alumina with Large Mesopore by the Gel Skeletal Reinforcement and Its Catalytic Cracking Properties. ACS Symposium Series, 2012, , 51-60.	0.5	4
52	Titanophosphate glasses as lithium-free nonsilicate pH-responsive glasses—Compatibility between pH responsivity and self-cleaning properties. Materials Research Bulletin, 2012, 47, 1942-1949.	5.2	9
53	Second harmonic generation of thermally poled ZnCl2 or ZnBr2–B2O3–TeO2 glasses and its mechanism. Journal of Non-Crystalline Solids, 2011, 357, 1013-1015.	3.1	3
54	Catalytic Properties of Amorphous Silica-alumina Prepared Using Dicarboxylic and Tricarboxylic Acids as Matrix in Catalytic Cracking of <i>n</i> -Dodecane. Journal of the Japan Petroleum Institute, 2011, 54, 189-200.	0.6	15

#	Article	IF	CITATIONS
55	ZnO–Bi ₂ O ₃ –B ₂ O ₃ Glasses as Molding Glasses with High Refractive Indices and Low Coloration Codes. Journal of the American Ceramic Society, 2011, 94, 2061-2066.	3.8	37
56	Novel Method for Generating Large Mesopores in an Amorphous Silica–Alumina by Controlling the Pore Size with the Gel Skeletal Reinforcement and Its Catalytic Cracking Properties as a Catalyst Matrix. Chemistry Letters, 2011, 40, 558-560.	1.3	22
57	Catalytic properties of amorphous silica-alumina prepared using malic acid as a matrix in catalytic cracking of n-dodecane. Applied Catalysis A: General, 2010, 388, 68-76.	4.3	48
58	Ti3+-Free Titanoborophosphate Glasses as Molding Glasses with High Refractive Indices. Journal of the American Ceramic Society, 2009, 92, 1250-1255.	3.8	5
59	Luminescent properties of amorphous Al2O3 prepared by sol-gel method. Journal of the Ceramic Society of Japan, 2008, 116, 835-836.	1.1	15
60	Stress-induced second harmonic generation in silica glass. Journal of the Ceramic Society of Japan, 2008, 116, 1232-1233.	1.1	0
61	Ti3+-Free Multicomponent Titanophosphate Glasses as Ecologically Sustainable Optical Glasses. Journal of the American Ceramic Society, 2006, 89, 2521-2527.	3.8	23
62	Cycle performance of sol–gel optical sensor based on localized surface plasmon resonance of silver particles. Sensors and Actuators B: Chemical, 2006, 113, 382-388.	7.8	18
63	Tunable Localized-Surface-Plasmon-Resonance Characteristics of Independently Prepared Ag-TiO2 Particles. E-Journal of Surface Science and Nanotechnology, 2006, 4, 566-569.	0.4	2
64	Second Harmonic Generation from Thermally Poled Ge-S Glass System. Journal of the Ceramic Society of Japan, 2005, 113, 728-732.	1.3	7
65	Second Harmonic Generation from Thermally Poled PbO-Bi2O3-Ga2O3 Glasses. Journal of the Ceramic Society of Japan, 2005, 113, 555-557.	1.3	6
66	Sol–gel preparation and properties of TiO2–P2O5 bulk glasses. Materials Research Bulletin, 2005, 40, 55-66.	5.2	15
67	Second Harmonic Generation of Thermally Poled ZnCl2-B2O3-TeO2Glasses and Its Mechanism. Japanese Journal of Applied Physics, 2005, 44, L964-L965.	1.5	1
68	Influence of matrix on third order optical nonlinearity for semiconductor nanocrystals embedded in glass thin films prepared by Rf-sputtering. Journal of Non-Crystalline Solids, 2005, 351, 893-899.	3.1	20
69	Preparation of Silver Thin Films Consisting of Nano-Sized Particles by the Evaporation-Condensation Method and Its Linear and Nonlinear Optical Properties. Journal of the Ceramic Society of Japan, 2004, 112, 204-209.	1.3	4
70	Structure Study of Binary Titanophosphate Glasses Prepared by Sol-Gel and Melting Methods. Journal of the Ceramic Society of Japan, 2004, 112, 496-501.	1.3	11
71	Non-linear optical properties of Li2O–TiO2–P2O5 glasses. Journal of Non-Crystalline Solids, 2003, 324, 50-57	3.1	41
72	The Influence of Matrix on Quantum Size Confinement of Semiconductor Microcrystals Doped in Glass Thin Films Prepared by RF-Sputtering. Japanese Journal of Applied Physics, 2003, 42, 270-273.	1.5	5

TADANORI HASHIMOTO

#	Article	IF	CITATIONS
73	Second Harmonic Generation from YAl3(BO3)4-Containing Glass-Ceramics Prepared by Thermal Poling of Y2O3–Al2O3–B2O3Glasses. Japanese Journal of Applied Physics, 2003, 42, 5043-5047.	1.5	2
74	Second harmonic generation from CsLiB6O10-containing glass-ceramics. Journal of Materials Research, 2002, 17, 3110-3116.	2.6	4
75	Red-to-Yellow Electroluminescence from CdSe Microcrystal-Doped Indium Tin Oxide Thin Films. Japanese Journal of Applied Physics, 2002, 41, 2951-2953.	1.5	Ο
76	Crystallization Behavior of Alumina Gels Prepared by Sol-Gel Method Using Nitric Acid as a Catalyst. Complete .ALPHATransformation at 800.DEG.C Journal of the Ceramic Society of Japan, 2002, 110, 1025-1028.	1.3	7
77	Influence of Microcrystal Size on Third-Order Nonlinear Optical Susceptibility of CdSe Embedded SiO2 Glass Thin Films Prepared by Rf-Sputtering Journal of the Ceramic Society of Japan, 2002, 110, 921-926.	1.3	2
78	Second harmonic generation from thermally poled CdS microcrystal-containing glasses. Journal of Non-Crystalline Solids, 2001, 281, 198-204.	3.1	15
79	Second-Harmonic Generation from Thermally Poled PbO-GeO2 Glasses Journal of the Ceramic Society of Japan, 2001, 109, 366-368.	1.3	8
80	Title is missing!. Journal of Sol-Gel Science and Technology, 2001, 20, 275-285.	2.4	15
81	IR and XPS Studies on the Surface Structure of Poled ZnO–TeO ₂ Glasses with Secondâ€Order Nonlinearity. Journal of the American Ceramic Society, 2001, 84, 214-217.	3.8	17
82	Z-scan analyses for PbO-containing glass with large optical nonlinearity. Journal of Applied Physics, 2001, 90, 533-537.	2.5	23
83	The influence of matrix on the quantum size effect of CdSe microcrystals-doped thin films. Journal of Materials Science, 2000, 35, 3097-3103.	3.7	3
84	Comparative Study of Structure of Silica Gels from Different Sources. Journal of Sol-Gel Science and Technology, 2000, 19, 495-499.	2.4	70
85	Second-Harmonic Generation from Thermally Poled Mixed Alkali Silicate Glasses Containing Various Alkaline-Earth Oxides. Japanese Journal of Applied Physics, 2000, 39, 6530-6534.	1.5	6
86	Third-order nonlinear optical properties of the Na2S–PbS–GeS2 sulfide glasses and the Na2S–PbO–GeS2 oxysulfide glasses. Journal of Materials Research, 1999, 14, 330-333.	2.6	6
87	Title is missing!. Journal of Sol-Gel Science and Technology, 1999, 14, 95-102.	2.4	33
88	Optical non-linearity of TiO2-containing glasses measured by Z-scan technique. Journal of Non-Crystalline Solids, 1999, 253, 30-36.	3.1	41
89	Iron-Zircon Pigments Prepared by the Sol-Gel Method Journal of the Ceramic Society of Japan, 1999, 107, 534-540.	1.3	5
90	Sol–gel synthesis of zircon–effect of addition of lithium ions. Journal of Materials Science, 1998, 33, 4821-4828.	3.7	21

TADANORI HASHIMOTO

#	Article	IF	CITATIONS
91	X-ray diffraction of silica gels made by sol–gel method under different conditions. Journal of Non-Crystalline Solids, 1998, 240, 202-211.	3.1	39
92	Two-photon absorption and nonlinear refraction of lanthanum sulfide-gallium sulfide glasses. Journal of Applied Physics, 1998, 84, 2380-2384.	2.5	17
93	Quantum Size Effect of CuCl Microcrystals-Doped SiO ₂ Glass Thin Films. Journal of the Ceramic Society of Japan, 1998, 106, 1037-1039.	1.3	3
94	Second-Order Optical Nonlinearity in Electrically Poled Silicate Glass Containing Ga2O3. Japanese Journal of Applied Physics, 1997, 36, L865-L867.	1.5	2
95	Third-Order Nonlinear Optical Properties of Sulfide Glasses. Journal of the Ceramic Society of Japan, 1997, 105, 1079-1085.	1.3	3
96	Structure and Nonlinear Optical Properties of BaO-TiO ₂ -B ₂ O ₃ Glasses. Journal of the Ceramic Society of Japan, 1997, 105, 288-293.	1.3	25
97	Non-linear optical properties and structure of Na2Sî—,GeS2 glasses. Journal of Non-Crystalline Solids, 1997, 215, 61-67.	3.1	22
98	Preparation of La0.5Li0.5TiO3 perovskite thin films by the sol–gel method. Journal of Materials Science, 1997, 32, 2063-2070.	3.7	54
99	Thirdâ€order nonlinear optical properties of sol–gel derived αâ€Fe2O3, γâ€Fe2O3, and Fe3O4thin films. Journ of Applied Physics, 1996, 80, 3184-3190.	al _{2.5}	134
100	Structure and Nonlinear Optical Properties of Sb ₂ 0 ₃ -B ₂ 0 ₃ Binary Glasses. Journal of the Ceramic Society of Japan, 1996, 104, 1008-1014.	1.3	133
101	Sol-Gel Preparation and Nonlinear Optical Properties of Transition Metal Oxide Thin Films. Materials Transactions, JIM, 1996, 37, 435-441.	0.9	8
102	Phase matching of rutile single crystal. Applied Physics Letters, 1996, 68, 2478-2479.	3.3	7
103	Second Harmonic Generation from Surface CrystallizedLi2O–Ta2O5–SiO2Glass. Japanese Journal of Applied Physics, 1996, 35, 5355-5356.	1.5	7
104	Third-order nonlinear optical properties of sol–gel-derived V_2O_5, Nb_2O_5, and Ta_2O_5 thin films. Applied Optics, 1995, 34, 2941.	2.1	53
105	Sol–Gel Preparation and Third-Order Nonlinear Optical Properties of TiO2Thin Films. Bulletin of the Chemical Society of Japan, 1994, 67, 653-660.	3.2	62
106	Third-Order Nonlinear Optical Susceptibility of α-Fe ₂ 0 ₃ Thin Film Prepared by the Sol-Gel Method. Journal of the Ceramic Society of Japan, 1993, 101, 64-68.	1.3	55
107	Strengthening of sol-gel-derived SiO2 glass fibers by incorporating colloidal silica particles. Journal of Non-Crystalline Solids, 1992, 143, 31-39.	3.1	16
108	The sol-gel process for making SiO2 glass fibres from Si(OC4H9)4-H2O-C2H5OH-HCl solutions ? comparison with Si(OC2H5)4 solutions. Journal of Materials Science Letters, 1990, 9, 1341-1344.	0.5	7