Xiang-Xi Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8563247/publications.pdf

Version: 2024-02-01

35	1,261	19	34
papers	citations	h-index	g-index
36	36	36	1969 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Renal compartment–specific genetic variation analyses identify new pathways in chronic kidney disease. Nature Medicine, 2018, 24, 1721-1731.	30.7	170
2	Disabled-2 Is Essential for Endodermal Cell Positioning and Structure Formation during Mouse Embryogenesis. Developmental Biology, 2002, 251, 27-44.	2.0	156
3	Loss of A-type lamin expression compromises nuclear envelope integrity in breast cancer. Chinese Journal of Cancer, 2011, 30, 415-425.	4.9	88
4	Dynamic GATA6 expression in primitive endoderm formation and maturation in early mouse embryogenesis. Developmental Dynamics, 2008, 237, 2820-2829.	1.8	84
5	Nuclear envelope structural defects cause chromosomal numerical instability and aneuploidy in ovarian cancer. BMC Medicine, 2011, 9, 28.	5.5	77
6	Disabled-2 Is an Epithelial Surface Positioning Gene. Journal of Biological Chemistry, 2007, 282, 13114-13122.	3.4	68
7	Loss of GATA6 Leads to Nuclear Deformation and Aneuploidy in Ovarian Cancer. Molecular and Cellular Biology, 2009, 29, 4766-4777.	2.3	56
8	Loss of GATA4 and GATA6 Expression Specifies Ovarian Cancer Histological Subtypes and Precedes Neoplastic Transformation of Ovarian Surface Epithelia. PLoS ONE, 2009, 4, e6454.	2.5	53
9	Cell autonomous sorting and surface positioning in the formation of primitive endoderm in embryoid bodies. Genesis, 2007, 45, 327-338.	1.6	44
10	Cell adhesive affinity does not dictate primitive endoderm segregation and positioning during murine embryoid body formation. Genesis, 2009, 47, 579-589.	1.6	38
11	Nuclear envelope structural proteins facilitate nuclear shape changes accompanying embryonic differentiation and fidelity of gene expression. BMC Cell Biology, 2017, 18, 8.	3.0	36
12	Differential requirement for Dab2 in the development of embryonic and extra-embryonic tissues. BMC Developmental Biology, 2013, 13, 39.	2.1	34
13	Nuclear envelope structural defect underlies the main cause of aneuploidy in ovarian carcinogenesis. BMC Cell Biology, 2016, 17, 37.	3.0	28
14	Defective Nuclear Lamina in Aneuploidy and Carcinogenesis. Frontiers in Oncology, 2018, 8, 529.	2.8	28
15	Increased expression of Syne1/nesprinâ€1 facilitates nuclear envelope structure changes in embryonic stem cell differentiation. Developmental Dynamics, 2011, 240, 2245-2255.	1.8	27
16	GATA6 phosphorylation by $Erk1/2$ propels exit from pluripotency and commitment to primitive endoderm. Developmental Biology, 2018, 436, 55-65.	2.0	25
17	New biological research and understanding of <scp>P</scp> apanicolaou's test. Diagnostic Cytopathology, 2018, 46, 507-515.	1.0	25
18	Ectopic expression of GATA6 bypasses requirement for Grb2 in primitive endoderm formation. Developmental Dynamics, 2011, 240, 566-576.	1.8	24

#	Article	IF	Citations
19	Endocytic adaptors Arh and Dab2 control homeostasis of circulatory cholesterol. Journal of Lipid Research, 2016, 57, 809-817.	4.2	24
20	The Primitive Endoderm Segregates from the Epiblast in \hat{l}^21 Integrin-Deficient Early Mouse Embryos. Molecular and Cellular Biology, 2014, 34, 560-572.	2.3	22
21	Lamin A/C deficiency is an independent risk factor for cervical cancer. Cellular Oncology (Dordrecht), 2016, 39, 59-68.	4.4	19
22	Nuclear Lamin A/C Expression Is a Key Determinant of Paclitaxel Sensitivity. Molecular and Cellular Biology, 2021, 41, e0064820.	2.3	14
23	Development of a Mouse Model of Menopausal Ovarian Cancer. Frontiers in Oncology, 2014, 4, 36.	2.8	13
24	Exposure to low intensity ultrasound removes paclitaxel cytotoxicity in breast and ovarian cancer cells. BMC Cancer, 2021, 21, 981.	2.6	12
25	Disabled-2 Determines Commitment of a Pre-adipocyte Population in Juvenile Mice. Scientific Reports, 2016, 6, 35947.	3.3	11
26	<i>c</i> â€ <i>fos</i> elimination compensates for <i>disabled</i> â€ <i>2</i> requirement in mouse extraembryonic endoderm development. Developmental Dynamics, 2009, 238, 514-523.	1.8	10
27	REDD1, a new Ras oncogenic effector. Cell Cycle, 2009, 8, 675-676.	2.6	10
28	Pten facilitates epiblast epithelial polarization and proamniotic lumen formation in early mouse embryos. Developmental Dynamics, 2017, 246, 517-530.	1.8	10
29	Hormonal Induction and Roles of Disabled-2 in Lactation and Involution. PLoS ONE, 2014, 9, e110737.	2.5	10
30	Global Deletion of Trp53 Reverts Ovarian Tumor Phenotype of the Germ Cell–Deficient White Spotting Variant (Wv) Mice. Neoplasia, 2015, 17, 89-100.	5.3	7
31	Dynamic conversion of cell sorting patterns in aggregates of embryonic stem cells with differential adhesive affinity. BMC Developmental Biology, 2021, 21, 2.	2.1	6
32	Follicle Depletion Provides a Permissive Environment for Ovarian Carcinogenesis. Molecular and Cellular Biology, 2016, 36, 2418-2430.	2.3	5
33	Low Intensity Ultrasound as an Antidote to Taxane/Paclitaxel-induced Cytotoxicity. Journal of Cancer, 2022, 13, 2362-2373.	2.5	5
34	Breaking malignant nuclei as a non-mitotic mechanism of taxol-paclitaxel., 2021, 2, 86-93.		4
35	Paclitaxel and cancer treatment: Non-mitotic mechanisms of paclitaxel action in cancer therapy., 2022,, 269-286.		0