Shizhong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/856291/publications.pdf

Version: 2024-02-01

		66343	7	76900	
125	6,063	42		74	
papers	citations	h-index		g-index	
136	136	136		4898	
130	130	130		1030	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Scientific Reports, 2016, 6, 19444.	3.3	479
2	Theoretical Basis of the Beavis Effect. Genetics, 2003, 165, 2259-2268.	2.9	399
3	Estimating Polygenic Effects Using Markers of the Entire Genome. Genetics, 2003, 163, 789-801.	2.9	337
4	Bayesian LASSO for Quantitative Trait Loci Mapping. Genetics, 2008, 179, 1045-1055.	2.9	291
5	Quantitative Trait Locus Mapping Can Benefit From Segregation Distortion. Genetics, 2008, 180, 2201-2208.	2.9	197
6	Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12456-12461.	7.1	194
7	Mapping quantitative trait loci using four-way crosses. Genetical Research, 1996, 68, 175-181.	0.9	190
8	An Empirical Bayes Method for Estimating Epistatic Effects of Quantitative Trait Loci. Biometrics, 2007, 63, 513-521.	1.4	154
9	Bayesian Shrinkage Estimation of Quantitative Trait Loci Parameters. Genetics, 2005, 170, 465-480.	2.9	145
10	Genomeâ€wide dissection of the maize ear genetic architecture using multiple populations. New Phytologist, 2016, 210, 1095-1106.	7.3	142
11	Mapping Quantitative Trait Loci Using Naturally Occurring Genetic Variance Among Commercial Inbred Lines of Maize (Zea mays L.). Genetics, 2005, 169, 2267-2275.	2.9	138
12	A multiâ€parent advanced generation interâ€cross (<scp>MAGIC</scp>) population for genetic analysis and improvement of cowpea (<i>Vigna unguiculata</i> L. Walp.). Plant Journal, 2018, 93, 1129-1142.	5.7	132
13	Metabolomic prediction of yield in hybrid rice. Plant Journal, 2016, 88, 219-227.	5.7	120
14	Mapping Quantitative Trait Loci for Complex Binary Diseases Using Line Crosses. Genetics, 1996, 143, 1417-1424.	2.9	116
15	Mapping Quantitative Trait Loci by Controlling Polygenic Background Effects. Genetics, 2013, 195, 1209-1222.	2.9	111
16	Genomewide Analysis of Epistatic Effects for Quantitative Traits in Barley. Genetics, 2007, 175, 1955-1963.	2.9	107
17	Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Scientific Reports, 2018, 8, 6261.	3.3	105
18	Bayesian Mapping of Quantitative Trait Loci for Complex Binary Traits. Genetics, 2000, 155, 1391-1403.	2.9	105

#	Article	IF	Citations
19	Multipoint Mapping of Viability and Segregation Distorting Loci Using Molecular Markers. Genetics, 2000, 155, 1439-1447.	2.9	105
20	Mapping Quantitative Trait Loci Using Multiple Families of Line Crosses. Genetics, 1998, 148, 517-524.	2.9	93
21	Hybrid breeding of rice via genomic selection. Plant Biotechnology Journal, 2020, 18, 57-67.	8.3	87
22	Genetic control of the rate of wound healing in mice. Heredity, 2001, 86, 668-674.	2.6	83
23	Population genomic analyses from lowâ€coverage <scp>RAD</scp> â€Seq data: a case study on the nonâ€model cucurbit bottle gourd. Plant Journal, 2014, 77, 430-442.	5.7	80
24	High Density Linkage Map Construction and Mapping of Yield Trait QTLs in Maize (Zea mays) Using the Genotyping-by-Sequencing (GBS) Technology. Frontiers in Plant Science, 2017, 8, 706.	3.6	78
25	Genome-Wide Analysis of Grain Yield Stability and Environmental Interactions in a Multiparental Soybean Population. G3: Genes, Genomes, Genetics, 2018, 8, 519-529.	1.8	75
26	Mapping quantitative trait loci with epistatic effects. Genetical Research, 2002, 79, 185-198.	0.9	73
27	Mapping Quantitative Trait Loci Using Distorted Markers. International Journal of Plant Genomics, 2009, 2009, 1-11.	2.2	73
28	A Random-Model Approach to QTL Mapping in Multiparent Advanced Generation Intercross (MAGIC) Populations. Genetics, 2016, 202, 471-486.	2.9	71
29	Bayesian Mapping of Quantitative Trait Loci Under Complicated Mating Designs. Genetics, 2001, 157, 1759-1771.	2.9	70
30	Statistical power in genome-wide association studies and quantitative trait locus mapping. Heredity, 2019, 123, 287-306.	2.6	68
31	Further investigation on the regression method of mapping quantitative trait loci. Heredity, 1998, 80, 364-373.	2.6	67
32	Iteratively reweighted least squares mapping of quantitative trait loci. Behavior Genetics, 1998, 28, 341-355.	2.1	61
33	Bayesian Shrinkage Analysis of Quantitative Trait Loci for Dynamic Traits. Genetics, 2007, 176, 1169-1185.	2.9	59
34	Genetic Mapping and Genomic Selection Using Recombination Breakpoint Data. Genetics, 2013, 195, 1103-1115.	2.9	59
35	Mapping quantitative trait loci for ordered categorical traits in four-way crosses. Heredity, 1998, 81, 214-224.	2.6	58
36	Combining Different Line Crosses for Mapping Quantitative Trait Loci Using the Identical by Descent-Based Variance Component Method. Genetics, 1998, 149, 1139-1146.	2.9	58

#	Article	IF	CITATIONS
37	PROC QTL—A SAS Procedure for Mapping Quantitative Trait Loci. International Journal of Plant Genomics, 2009, 2009, 1-3.	2.2	57
38	Genomic selection: A breakthrough technology in rice breeding. Crop Journal, 2021, 9, 669-677.	5.2	55
39	Efficiency of multistage marker-assisted selection in the improvement of multiple quantitative traits. Heredity, 1998, 80, 489-498.	2.6	51
40	A Random Model Approach to Mapping Quantitative Trait Loci for Complex Binary Traits in Outbred Populations. Genetics, 1999, 153, 1029-1040.	2.9	50
41	Bayesian Mapping of Quantitative Trait Loci Under the Identity-by-Descent-Based Variance Component Model. Genetics, 2000, 156, 411-422.	2.9	50
42	An EM algorithm for mapping binary disease loci: application to fibrosarcoma in a four-way cross mouse family. Genetical Research, 2003, 82, 127-138.	0.9	43
43	Significance Test and Genome Selection in Bayesian Shrinkage Analysis. International Journal of Plant Genomics, 2010, 2010, 1-11.	2.2	42
44	Detection of additive and additive×environment interaction effects of QTLs for yieldâ€component traits of rice using singleâ€segment substitution lines (SSSLs). Plant Breeding, 2016, 135, 452-458.	1.9	42
45	A genome-wide association and meta-analysis reveal regions associated with seed size in cowpea [Vigna unguiculata (L.) Walp]. Theoretical and Applied Genetics, 2019, 132, 3079-3087.	3.6	42
46	Generalized linear model for interval mapping of quantitative trait loci. Theoretical and Applied Genetics, 2010, 121, 47-63.	3.6	37
47	Predicted Residual Error Sum of Squares of Mixed Models: An Application for Genomic Prediction. G3: Genes, Genomes, Genetics, 2017, 7, 895-909.	1.8	34
48	Meiosis and the Evolution of Recombination at Low Mutation Rates. Genetics, 2000, 156, 449-456.	2.9	33
49	Accurate prediction of maize grain yield using its contributing genes for gene-based breeding. Genomics, 2020, 112, 225-236.	2.9	32
50	An Infinitesimal Model for Quantitative Trait Genomic Value Prediction. PLoS ONE, 2012, 7, e41336.	2.5	30
51	Mapping quantitative trait loci for binary traits using a heterogeneous residual variance model: an application to Marek's disease susceptibility in chickens. Genetica, 1998, 104, 171-178.	1.1	29
52	Mapping quantitative trait loci for complex binary traits in outbred populations. Heredity, 1999, 82, 668-676.	2.6	29
53	A directed learning strategy integrating multiple omic data improves genomic prediction. Plant Biotechnology Journal, 2019, 17, 2011-2020.	8.3	29
54	Incorporation of parental phenotypic data into multiâ€omic models improves prediction of yieldâ€related traits in hybrid rice. Plant Biotechnology Journal, 2021, 19, 261-272.	8.3	27

#	Article	IF	CITATIONS
55	Mapping Environment-Specific Quantitative Trait Loci. Genetics, 2010, 186, 1053-1066.	2.9	24
56	Multiple locus genome-wide association studies for important economic traits of oil palm. Tree Genetics and Genomes, 2017, 13, 1.	1.6	24
57	On the evolution of recombination and meiosis. Genetical Research, 1999, 73, 119-131.	0.9	23
58	Maximum likelihood analysis of quantitative trait loci under selective genotyping. Heredity, 2000, 84, 525-537.	2.6	23
59	PEPIS: A Pipeline for Estimating Epistatic Effects in Quantitative Trait Locus Mapping and Genome-Wide Association Studies. PLoS Computational Biology, 2016, 12, e1004925.	3.2	23
60	Mapping quantitative trait loci in tetraploid populations. Genetical Research, 2000, 76, 105-115.	0.9	22
61	Whole-Genome Quantitative Trait Locus Mapping Reveals Major Role of Epistasis on Yield of Rice. PLoS ONE, 2014, 9, e87330.	2.5	21
62	Multipoint genetic mapping of quantitative trait loci using a variable number of sibs per family. Genetical Research, 1998, 71, 73-83.	0.9	20
63	Methods of plant breeding in the genome era. Genetical Research, 2010, 92, 423-441.	0.9	20
64	Principles of Statistical Genomics. , 2013, , .		19
65	JRmGRN: joint reconstruction of multiple gene regulatory networks with common hub genes using data from multiple tissues or conditions. Bioinformatics, 2018, 34, 3470-3478.	4.1	19
66	Simultaneous Improvement and Genetic Dissection of Drought Tolerance Using Selected Breeding Populations of Rice. Frontiers in Plant Science, 2018, 9, 320.	3.6	19
67	Efficient multivariate analysis algorithms for longitudinal genome-wide association studies. Bioinformatics, 2019, 35, 4879-4885.	4.1	19
68	Generalized linear mixed model for segregation distortion analysis. BMC Genetics, 2011, 12, 97.	2.7	18
69	A rapid epistatic mixed-model association analysis by linear retransformations of genomic estimated values. Bioinformatics, 2018, 34, 1817-1825.	4.1	18
70	GWASpro: a high-performance genome-wide association analysis server. Bioinformatics, 2019, 35, 2512-2514.	4.1	18
71	Genomic prediction using subsampling. BMC Bioinformatics, 2017, 18, 191.	2.6	17
72	Correcting the bias in estimation of genetic variances contributed by individual QTL. Genetica, 2003, 119, 107-114.	1.1	16

#	Article	IF	CITATIONS
73	A Mixed Model Approach to Genome-Wide Association Studies for Selection Signatures, with Application to Mice Bred for Voluntary Exercise Behavior. Genetics, 2017, 207, 785-799.	2.9	15
74	Genetic Basis of Aerobically Supported Voluntary Exercise: Results from a Selection Experiment with House Mice. Genetics, 2020, 216, 781-804.	2.9	15
75	Mapping Quantitative Trait Loci in F2 Incorporating Phenotypes of F3 Progeny. Genetics, 2004, 166, 1981-1993.	2.9	15
76	Genetic Dissection of Hybrid Performance and Heterosis for Yield-Related Traits in Maize. Frontiers in Plant Science, 2021, 12, 774478.	3.6	15
77	Accurate Prediction of a Quantitative Trait Using the Genes Controlling the Trait for Gene-Based Breeding in Cotton. Frontiers in Plant Science, 2020, 11, 583277.	3.6	14
78	Rapid epistatic mixed-model association studies by controlling multiple polygenic effects. Bioinformatics, 2020, 36, 4833-4837.	4.1	14
79	Derivation of the Shrinkage Estimates of Quantitative Trait Locus Effects. Genetics, 2007, 177, 1255-1258.	2.9	13
80	Strategies of Markerâ€Aided Recurrent Selection. Crop Science, 1998, 38, 1526-1535.	1.8	11
81	QTL Analysis in Plants. , 2002, 195, 283-310.		11
82	Multipoint genetic mapping of quantitative trait loci with dominant markers in outbred populations. Genetica, 1999, 105, 281-291.	1.1	8
83	Adaptive Ridge Regression for Rare Variant Detection. PLoS ONE, 2012, 7, e44173.	2.5	7
84	Statistics of Mendelian segregation—A mixture model. Journal of Animal Breeding and Genetics, 2019, 136, 341-350.	2.0	7
85	Deshrinking ridge regression for genome-wide association studies. Bioinformatics, 2020, 36, 4154-4162.	4.1	6
86	Genetic control of the rate of wound healing in mice. Heredity, 2001, 86, 668-674.	2.6	6
87	Genome-wide association studies using binned genotypes. Heredity, 2020, 124, 288-298.	2.6	5
88	2D association and integrative omics analysis in rice provides systems biology view in trait analysis. Communications Biology, 2018, 1, 153.	4.4	4
89	Estimation of genetic variance contributed by a quantitative trait locus: correcting the bias associated with significance tests. Genetics, 2021, 219, .	2.9	4
90	Efficiency of multistage marker-assisted selection in the improvement of multiple quantitative traits. Heredity, 1998, 80, 489-498.	2.6	4

#	Article	IF	CITATIONS
91	Sib mating designs for mapping quantitative trait loci. Genetica, 1998, 104, 9-19.	1.1	3
92	Testing Hardy–Weinberg disequilibrium using the generalized linear model. Genetical Research, 2012, 94, 319-330.	0.9	3
93	An expectation and maximization algorithm for estimating QÂ×ÂE interaction effects. Theoretical and Applied Genetics, 2012, 124, 1375-1387.	3.6	3
94	Mapping QTL for Multiple Traits., 2013,, 209-222.		3
95	Recombination Fraction., 2013, , 11-22.		2
96	Genome Scanning for Quantitative Trait Loci. , 2013, , 95-108.		2
97	Mapping quantitative trait loci using binned genotypes. Journal of Genetics and Genomics, 2019, 46, 343-352.	3.9	2
98	A coordinate descent approach for sparse Bayesian learning in high dimensional QTL mapping and genome-wide association studies. Bioinformatics, 2019, 35, 4327-4335.	4.1	2
99	GPU empowered pipelines for calculating genome-wide kinship matrices with ultra-high dimensional genetic variants and facilitating 1D and 2D GWAS. NAR Genomics and Bioinformatics, 2020, 2, lqz009.	3.2	2
100	QTL Mapping in Other Populations. , 2013, , 171-185.		1
101	Hierarchical Clustering of Microarray Data. , 2013, , 303-319.		1
102	Time-Course Microarray Data Analysis. , 2013, , 365-382.		1
103	An alternative derivation of Harville's restricted log likelihood function for variance component estimation. Biometrical Journal, 2019, 61, 157-161.	1.0	1
104	PIP-SNP: a pipeline for processing SNP data featured as linkage disequilibrium bin mapping, genotype imputing and marker synthesizing. NAR Genomics and Bioinformatics, 2021, 3, lqab060.	3.2	1
105	Estimating genetic variance contributed by a quantitative trait locus: A random model approach. PLoS Computational Biology, 2022, 18, e1009923.	3.2	1
106	An embarrassment of riches: the stochastic generation of beneficial mutations. Genetica, 1998, 102/103, 145-155.	1.1	0
107	Random Model Approach to QTL Mapping. , 2013, , 187-207.		0
108	Bayesian Multiple QTL Mapping. , 2013, , 223-256.		О

#	Article	IF	CITATIONS
109	Empirical Bayesian QTL Mapping. , 2013, , 257-279.		О
110	Microarray Differential Expression Analysis. , 2013, , 283-302.		0
111	Model-Based Clustering of Microarray Data. , 2013, , 321-333.		О
112	Gene-Specific Analysis of Variances. , 2013, , 335-342.		0
113	Genetic Map Construction., 2013,, 23-33.		0
114	Multipoint Analysis of Mendelian Loci. , 2013, , 35-49.		0
115	Basic Concepts of Quantitative Genetics. , 2013, , 53-60.		0
116	Map Functions. , 2013, , 3-10.		0
117	Major Gene Detection., 2013,, 61-78.		O
118	Segregation Analysis., 2013,, 79-93.		0
119	Interval Mapping., 2013,, 109-129.		O
120	Interval Mapping for Ordinal Traits., 2013,, 131-149.		0
121	Mapping Segregation Distortion Loci. , 2013, , 151-170.		0
122	Factor Analysis of Microarray Data., 2013,, 343-353.		0
123	Classification of Tissue Samples Using Microarrays. , 2013, , 355-363.		0
124	Quantitative Trait-Associated Microarray Data Analysis. , 2013, , 383-394.		0
125	Mapping Expression Quantitative Trait Loci. , 2013, , 395-411.		O