List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8562640/publications.pdf

Version: 2024-02-01

ALLISON L COWIN

#	Article	IF	CITATIONS
1	Antimicrobial silver dressings: a review of emerging issues for modern wound care. ANZ Journal of Surgery, 2022, 92, 379-384.	0.3	9
2	Nanomaterials-based Drug Delivery Approaches for Wound Healing. Current Pharmaceutical Design, 2022, 28, 711-726.	0.9	12
3	Polycationic Silver Nanoclusters Comprising Nanoreservoirs of Ag ⁺ lons with High Antimicrobial and Antibiofilm Activity. ACS Applied Materials & Interfaces, 2022, 14, 390-403.	4.0	35
4	In Vitro Wound Healing Properties of Novel Acidic Treatment Regimen in Enhancing Metabolic Activity and Migration of Skin Cells. International Journal of Molecular Sciences, 2022, 23, 7188.	1.8	6
5	Flightless I Negatively Regulates Macrophage Surface TLR4, Delays Early Inflammation, and Impedes Wound Healing. Cells, 2022, 11, 2192.	1.8	2
6	Microbiopsyâ€based minimally invasive skin sampling for molecular analysis is acceptable to Epidermolysis Bullosa Simplex patients where conventional diagnostic biopsy was refused. Skin Research and Technology, 2021, 27, 461-463.	0.8	3
7	pH-Responsive "Smart―Hydrogel for Controlled Delivery of Silver Nanoparticles to Infected Wounds. Antibiotics, 2021, 10, 49.	1.5	63
8	Treatment of murine partial thickness scald injuries with multipotent adult progenitor cells decreases inflammation and promotes angiogenesis leading to improved burn injury repair. Wound Repair and Regeneration, 2021, 29, 380-392.	1.5	0
9	Plasma-polymerized pericyte patches improve healing of murine wounds through increased angiogenesis and reduced inflammation. International Journal of Energy Production and Management, 2021, 8, rbab024.	1.9	3
10	Overexpression of Flii during Murine Embryonic Development Increases Symmetrical Division of Epidermal Progenitor Cells. International Journal of Molecular Sciences, 2021, 22, 8235.	1.8	6
11	Multifunctional ultrasmall AgNP hydrogel accelerates healing of S. aureus infected wounds. Acta Biomaterialia, 2021, 128, 420-434.	4.1	70
12	Eradication of Mature Bacterial Biofilms with Concurrent Improvement in Chronic Wound Healing Using Silver Nanoparticle Hydrogel Treatment. Biomedicines, 2021, 9, 1182.	1.4	34
13	On cold atmospheric-pressure plasma jet induced DNA damage in cells. Journal Physics D: Applied Physics, 2021, 54, 035203.	1.3	17
14	Increased Expression of Flightless I in Cutaneous Squamous Cell Carcinoma Affects Wnt/β-Catenin Signaling Pathway. International Journal of Molecular Sciences, 2021, 22, 13203.	1.8	0
15	Flightless I, a contributing factor to skin blistering in Kindler syndrome patients?. Journal of Cutaneous Pathology, 2020, 47, 186-189.	0.7	1
16	Mesenchymal Stem Cell Secretome as an Emerging Cell-Free Alternative for Improving Wound Repair. International Journal of Molecular Sciences, 2020, 21, 7038.	1.8	98
17	Immunological Memory in Imiquimod-Induced Murine Model of Psoriasiform Dermatitis. International Journal of Molecular Sciences, 2020, 21, 7228.	1.8	17
18	Collagen-functionalized electrospun smooth and porous polymeric scaffolds for the development of human skin-equivalent. RSC Advances, 2020, 10, 26594-26603.	1.7	21

#	Article	IF	CITATIONS
19	Human multipotent adult progenitor cell-conditioned medium improves wound healing through modulating inflammation and angiogenesis in mice. Stem Cell Research and Therapy, 2020, 11, 299.	2.4	17
20	Multifunctional Roles of the Actin-Binding Protein Flightless I in Inflammation, Cancer and Wound Healing. Frontiers in Cell and Developmental Biology, 2020, 8, 603508.	1.8	19
21	Ultrasmall AgNP-Impregnated Biocompatible Hydrogel with Highly Effective Biofilm Elimination Properties. ACS Applied Materials & amp; Interfaces, 2020, 12, 41011-41025.	4.0	75
22	Increasing the level of cytoskeletal protein Flightless I reduces adhesion formation in a murine digital flexor tendon model. Journal of Orthopaedic Surgery and Research, 2020, 15, 362.	0.9	5
23	Attenuation of Flightless I Increases Human Pericyte Proliferation, Migration and Angiogenic Functions and Improves Healing in Murine Diabetic Wounds. International Journal of Molecular Sciences, 2020, 21, 5599.	1.8	11
24	Human gingival fibroblast secretome accelerates wound healing through anti-inflammatory and pro-angiogenic mechanisms. Npj Regenerative Medicine, 2020, 5, 24.	2.5	38
25	In vitro analysis of the effect of Flightless I on murine tenocyte cellular functions. Journal of Orthopaedic Surgery and Research, 2020, 15, 170.	0.9	7
26	Porous Alumina Membrane-Based Electrochemical Biosensor for Protein Biomarker Detection in Chronic Wounds. Frontiers in Chemistry, 2020, 8, 155.	1.8	20
27	Effect of Flightless I Expression on Epidermal Stem Cell Niche During Wound Repair. Advances in Wound Care, 2020, 9, 161-173.	2.6	9
28	Systemic Delivery of Anti-Integrin αL Antibodies Reduces Early Macrophage Recruitment, Inflammation, and Scar Formation in Murine Burn Wounds. Advances in Wound Care, 2020, 9, 637-648.	2.6	16
29	Improved recovery of cryopreserved cell monolayers with a hyaluronic acid surface treatment. Biointerphases, 2020, 15, 061015.	0.6	1
30	Silver-based wound dressings: current issues and future developments for treating bacterial infections. Wound Practice and Research, 2020, 28, .	0.0	7
31	Ultrasmall Gold Nanocluster Based Antibacterial Nanoaggregates for Infectious Wound Healing. ChemNanoMat, 2019, 5, 1176-1181.	1.5	27
32	The interplay between size and valence state on the antibacterial activity of sub-10 nm silver nanoparticles. Nanoscale Advances, 2019, 1, 2365-2371.	2.2	27
33	Flightless I exacerbation of inflammatory responses contributes to increased colonic damage in a mouse model of dextran sulphate sodium-induced ulcerative colitis. Scientific Reports, 2019, 9, 12792.	1.6	13
34	Development and use of biomaterials as wound healing therapies. Burns and Trauma, 2019, 7, 2.	2.3	105
35	Multipotent adult progenitor cells improve healing of mouse burn wounds. Cytotherapy, 2019, 21, e10.	0.3	0
36	Magnetic Nanoparticles Enhance Pore Blockage-Based Electrochemical Detection of a Wound Biomarker. Frontiers in Chemistry, 2019, 7, 438.	1.8	11

#	Article	IF	CITATIONS
37	Skin Barrier and Autoimmunity—Mechanisms and Novel Therapeutic Approaches for Autoimmune Blistering Diseases of the Skin. Frontiers in Immunology, 2019, 10, 1089.	2.2	19
38	A Multifunctional Wearable Device with a Graphene/Silver Nanowire Nanocomposite for Highly Sensitive Strain Sensing and Drug Delivery. Journal of Carbon Research, 2019, 5, 17.	1.4	26
39	New Innovations in Wound Healing and Repair. International Journal of Molecular Sciences, 2019, 20, 1724.	1.8	1
40	Complex wounds, new approaches for this growing problem. Wound Practice and Research, 2019, 27, 108.	0.0	0
41	A label-free optical biosensor based on nanoporous anodic alumina for tumour necrosis factor-alpha detection in chronic wounds. Sensors and Actuators B: Chemical, 2018, 257, 116-123.	4.0	36
42	"Chocolate―Gold Nanoparticles—One Pot Synthesis and Biocompatibility. Nanomaterials, 2018, 8, 496.	1.9	16
43	Recombinant Leucine-Rich Repeat Flightless-Interacting Protein-1 Improves Healing of Acute Wounds through Its Effects on Proliferation Inflammation and Collagen Deposition. International Journal of Molecular Sciences, 2018, 19, 2014.	1.8	11
44	Bioluminescent murine models of bacterial sepsis and scald wound infections for antimicrobial efficacy testing. PLoS ONE, 2018, 13, e0200195.	1.1	23
45	Flightless I Alters the Inflammatory Response and Autoantibody Profile in an OVA-Induced Atopic Dermatitis Skin-Like Disease. Frontiers in Immunology, 2018, 9, 1833.	2.2	11
46	Flightless-I Blocks p62-Mediated Recognition of LC3 to Impede Selective Autophagy and Promote Breast Cancer Progression. Cancer Research, 2018, 78, 4853-4864.	0.4	19
47	Wound Management Using Porous Silicon. , 2018, , 1433-1452.		0
48	Investigation of Helium Plasma Jet-Treated Serum and Cell Media on the Viability of Skin Cells. Journal of Biomaterials and Tissue Engineering, 2018, 8, 892-899.	0.0	1
49	Development of Advanced Dressings for the Delivery of Progenitor Cells. ACS Applied Materials & Interfaces, 2017, 9, 3445-3454.	4.0	12
50	Wound Healing: Delivery of Flightless I Neutralizing Antibody from Porous Silicon Nanoparticles Improves Wound Healing in Diabetic Mice (Adv. Healthcare Mater. 2/2017). Advanced Healthcare Materials, 2017, 6, .	3.9	0
51	The assessment of cold atmospheric plasma treatment of DNA in synthetic models of tissue fluid, tissue and cells. Journal Physics D: Applied Physics, 2017, 50, 274001.	1.3	21
52	Development of Topical Delivery Systems for Flightless Neutralizing Antibody. Journal of Pharmaceutical Sciences, 2017, 106, 1795-1804.	1.6	15
53	Flightless I Expression Enhances Murine Claw Regeneration Following Digit Amputation. Journal of Investigative Dermatology, 2017, 137, 228-236.	0.3	8
54	Reducing Flightless I expression decreases severity of psoriasis in an imiquimod-induced murine model of psoriasiform dermatitis. British Journal of Dermatology, 2017, 176, 705-712.	1.4	17

#	Article	IF	CITATIONS
55	Delivery of Flightless I Neutralizing Antibody from Porous Silicon Nanoparticles Improves Wound Healing in Diabetic Mice. Advanced Healthcare Materials, 2017, 6, 1600707.	3.9	31
56	The Importance of Pericytes in Healing: Wounds and other Pathologies. International Journal of Molecular Sciences, 2017, 18, 1129.	1.8	51
57	A Central Bioactive Region of LTBP-2 Stimulates the Expression of TGF-β1 in Fibroblasts via Akt and p38 Signalling Pathways. International Journal of Molecular Sciences, 2017, 18, 2114.	1.8	13
58	Cytoskeletal Regulation of Inflammation and Its Impact on Skin Blistering Disease Epidermolysis Bullosa Acquisita. International Journal of Molecular Sciences, 2016, 17, 1116.	1.8	14
59	Plasma Polymer and Biomolecule Modification of 3D Scaffolds for Tissue Engineering. Plasma Processes and Polymers, 2016, 13, 678-689.	1.6	20
60	Understanding the outcomes of a home nursing programme for patients with epidermolysis bullosa: an Australian perspective. International Wound Journal, 2016, 13, 863-869.	1.3	9
61	How plasma induced oxidation, oxygenation, and de-oxygenation influences viability of skin cells. Applied Physics Letters, 2016, 109, .	1.5	25
62	Role of Actin Cytoskeleton in the Regulation of Epithelial Cutaneous Stem Cells. Stem Cells and Development, 2016, 25, 749-759.	1.1	10
63	Haptotatic Plasma Polymerized Surfaces for Rapid Tissue Regeneration and Wound Healing. ACS Applied Materials & Interfaces, 2016, 8, 32675-32687.	4.0	9
64	Delivery of Flightless I siRNA from Porous Silicon Nanoparticles Improves Wound Healing in Mice. ACS Biomaterials Science and Engineering, 2016, 2, 2339-2346.	2.6	33
65	Developing a Dressing for Topical Delivery of Multipotent Adult Progenitor Cells to Wounds. Cytotherapy, 2016, 18, S65.	0.3	0
66	Data on keratin expression in human cells cultured with Australian native plant extracts. Data in Brief, 2016, 7, 848-867.	0.5	1
67	Flightless I is a key regulator of the fibroproliferative process in hypertrophic scarring and a target for a novel antiscarring therapy. British Journal of Dermatology, 2016, 174, 786-794.	1.4	18
68	Co-localization of LTBP-2 with FGF-2 in fibrotic human keloid and hypertrophic scar. Journal of Molecular Histology, 2016, 47, 35-45.	1.0	25
69	Native Australian plant extracts differentially induce Collagen I and Collagen III in vitro and could be important targets for the development of new wound healing therapies. Fìtoterapìâ, 2016, 109, 45-51.	1.1	11
70	Wound Management Using Porous Silicon. , 2016, , 1-21.		1
71	Effects of human pericytes in a murine excision model of wound healing. Experimental Dermatology, 2015, 24, 881-882.	1.4	9
72	Fibroblastâ€ s pecific upregulation of <scp>F</scp> lightless <scp>I</scp> impairs wound healing. Experimental Dermatology, 2015, 24, 692-697.	1.4	11

#	Article	IF	CITATIONS
73	Combination of Low Calcium with Y-27632 Rock Inhibitor Increases the Proliferative Capacity, Expansion Potential and Lifespan of Primary Human Keratinocytes while Retaining Their Capacity to Differentiate into Stratified Epidermis in a 3D Skin Model. PLoS ONE, 2015, 10, e0123651.	1.1	36
74	LTBP-2 Has a Single High-Affinity Binding Site for FGF-2 and Blocks FGF-2-Induced Cell Proliferation. PLoS ONE, 2015, 10, e0135577.	1.1	15
75	Therapeutic Potential of Inorganic Nanoparticles for the Delivery of Monoclonal Antibodies. Journal of Nanomaterials, 2015, 2015, 1-11.	1.5	18
76	Stem Cells for Cutaneous Wound Healing. BioMed Research International, 2015, 2015, 1-11.	0.9	75
77	A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis. Developmental Cell, 2015, 35, 759-774.	3.1	33
78	Surface engineering of porous silicon to optimise therapeutic antibody loading and release. Journal of Materials Chemistry B, 2015, 3, 4123-4133.	2.9	30
79	<i>InÂvivo</i> delivery of functional Flightless I siRNA using layer-by-layer polymer surface modification. Journal of Biomaterials Applications, 2015, 30, 257-268.	1.2	9
80	Cytoskeletal protein flightless I inhibits apoptosis, enhances tumor cell invasion and promotes cutaneous squamous cell carcinoma progression. Oncotarget, 2015, 6, 36426-36440.	0.8	25
81	Flightless I overâ€expression impairs skin barrier development, function and recovery following skin blistering. Journal of Pathology, 2014, 232, 541-552.	2.1	28
82	Attenuation of flightless I improves wound healing and enhances angiogenesis in a murine model of type 1 diabetes. Diabetologia, 2014, 57, 402-412.	2.9	33
83	A Novel Murine Model of Hypertrophic Scarring Using Subcutaneous Infusion of Bleomycin. Plastic and Reconstructive Surgery, 2014, 133, 69-78.	0.7	27
84	Pericytes, Mesenchymal Stem Cells and the Wound Healing Process. Cells, 2013, 2, 621-634.	1.8	90
85	Tropomyosin Regulates Cell Migration during Skin Wound Healing. Journal of Investigative Dermatology, 2013, 133, 1330-1339.	0.3	38
86	Topically Applied Flightless I Neutralizing Antibodies Improve Healing of Blistered Skin in a Murine Model of Epidermolysis Bullosa Acquisita. Journal of Investigative Dermatology, 2013, 133, 1008-1016.	0.3	54
87	Lifting the Silver Flakes: The Pathogenesis and Management of Chronic Plaque Psoriasis. BioMed Research International, 2013, 2013, 1-9.	0.9	33
88	The Influence of Flightless I on Toll-Like-Receptor-Mediated Inflammation in a Murine Model of Diabetic Wound Healing. BioMed Research International, 2013, 2013, 1-9.	0.9	21
89	Nanotechnological Advances in Cutaneous Medicine. Journal of Nanomaterials, 2013, 2013, 1-8.	1.5	15
90	Matrix Metalloproteinase Biosensor Based on a Porous Silicon Reflector. Australian Journal of Chemistry, 2013, 66, 1428.	0.5	13

#	Article	IF	CITATIONS
91	Venous ulceration contaminated by multi-resistant organisms: larval therapy and debridement. Journal of Wound Care, 2013, 22, S27-S30.	0.5	4
92	Lower Vibrissa Follicle Amputation: A Mammalian Model of Regeneration. Methods in Molecular Biology, 2013, 1037, 437-448.	0.4	1
93	Flightless, secreted through a late endosome/lysosome pathway, binds LPS and dampens cytokine secretion. Journal of Cell Science, 2012, 125, 4288-96.	1.2	28
94	Lysosomal secretion of Flightless I upon injury has the potential to alter inflammation. Communicative and Integrative Biology, 2012, 5, 546-549.	0.6	14
95	Flii neutralizing antibodies improve wound healing in porcine preclinical studies. Wound Repair and Regeneration, 2012, 20, 523-536.	1.5	35
96	Cytoskeletal Regulation of Dermal Regeneration. Cells, 2012, 1, 1313-1327.	1.8	12
97	Cytoskeletal protein Flightless (Flii) is elevated in chronic and acute human wounds and wound fluid: neutralizing its activity in chronic but not acute wound fluid improves cellular proliferation. European Journal of Dermatology, 2012, 22, 740-750.	0.3	16
98	The effectiveness of methods of off-loading to prevent diabetic foot ulcers in adults with diabetes: A Systematic Review. JBI Library of Systematic Reviews, 2012, 10, 1-14.	0.1	0
99	The effectiveness of methods of off-loading to prevent diabetic foot ulcers in adults with diabetes: A Systematic Review. JBI Database of Systematic Reviews and Implementation Reports, 2012, 10, 1-14.	1.7	2
100	Decreased expression of Flightless I, a gelsolin family member and developmental regulator, in early-gestation fetal wounds improves healing. Mammalian Genome, 2011, 22, 341-352.	1.0	17
101	Overexpression of the <i>Flii</i> gene increases dermal–epidermal blistering in an autoimmune ColVII mouse model of epidermolysis bullosa acquisita. Journal of Pathology, 2011, 225, 401-413.	2.1	40
102	Mouse strains for the ubiquitous or conditional overexpression of the <i>Flii</i> gene. Genesis, 2011, 49, 681-688.	0.8	16
103	Regeneration of Hair Follicles Is Modulated by Flightless I (Flii) in a Rodent Vibrissa Model. Journal of Investigative Dermatology, 2011, 131, 838-847.	0.3	16
104	Regulation of Focal Adhesions by Flightless I Involves Inhibition of Paxillin Phosphorylation via a Rac1-Dependent Pathway. Journal of Investigative Dermatology, 2011, 131, 1450-1459.	0.3	36
105	Attenuation of Flightless I, an actin-remodelling protein, improves burn injury repair via modulation of transforming growth factor (TGF)-121 and TGF-123. British Journal of Dermatology, 2009, 161, 326-336.	1.4	42
106	ILâ€5â€overexpressing mice exhibit eosinophilia and altered wound healing through mechanisms involving prolonged inflammation. Immunology and Cell Biology, 2009, 87, 131-140.	1.0	41
107	Flightless I Regulates Hemidesmosome Formation and Integrin-Mediated Cellular Adhesion and Migration during Wound Repair. Journal of Investigative Dermatology, 2009, 129, 2031-2045.	0.3	71
108	The role of the tetraspanin CD151 in primary keratinocyte and fibroblast functions: Implications for wound healing. Experimental Cell Research, 2008, 314, 2165-2175.	1.2	39

#	Article	IF	CITATIONS
109	Flightless I: An actin-remodelling protein and an important negative regulator of wound repair. International Journal of Biochemistry and Cell Biology, 2008, 40, 1415-1419.	1.2	72
110	Gender specific effects on the actin-remodelling protein Flightless I and TGF-β1 contribute to impaired wound healing in aged skin. International Journal of Biochemistry and Cell Biology, 2008, 40, 1555-1569.	1.2	29
111	Collagen loss and impaired wound healing is associated with c-Myb deficiency. Journal of Pathology, 2007, 211, 351-361.	2.1	59
112	Flightless I deficiency enhances wound repair by increasing cell migration and proliferation. Journal of Pathology, 2007, 211, 572-581.	2.1	92
113	Differential Effects of Insulin-Like Growth Factors on Scratch Wound Repair in Respiratory Epithelial Cells. American Journal of Rhinology & Allergy, 2006, 20, 652-657.	2.3	5
114	Mitogenic bovine whey extract modulates matrix metalloproteinase-2, -9, and tissue inhibitor of matrix metalloproteinase-2 levels in chronic leg ulcers. Wound Repair and Regeneration, 2006, 14, 28-37.	1.5	18
115	Etanercept decreases tumor necrosis factor-α activity in chronic wound fluid. Wound Repair and Regeneration, 2006, 14, 421-426.	1.5	39
116	Wound Healing Is Defective in Mice Lacking Tetraspanin CD151. Journal of Investigative Dermatology, 2006, 126, 680-689.	0.3	80
117	TNF-α Mediates p38 MAP Kinase Activation and Negatively Regulates Bone Formation at the Injured Growth Plate in Rats. Journal of Bone and Mineral Research, 2006, 21, 1075-1088.	3.1	118
118	LETTER TO THE EDITOR: The Other Side: Failure in Fair and Balanced Reporting. Journal of Sexual Medicine, 2005, 2, 583-584.	0.3	9
119	The Effect of a Hyaluronic Acid–Based Nasal Pack on Mucosal Healing in a Sheep Model of Sinusitis. American Journal of Rhinology & Allergy, 2005, 19, 572-576.	2.3	35
120	The Effect of Insulin-Like Growth Factor 1 Incorporated into a Hyaluronic Acid-Based Nasal Pack on Nasal Mucosal Healing in a Healthy Sheep Model and a Sheep Model of Chronic Sinusitis. American Journal of Rhinology & Allergy, 2005, 19, 251-256.	2.3	20
121	The Effect of an Expandable Polyvinyl Acetate (Merocel) Pack on the Healing of the Nasal Mucosa of Sheep. American Journal of Rhinology & Allergy, 2005, 19, 577-581.	2.3	31
122	Differential expression of F-actin in in utero fetal wounds. European Journal of Dermatology, 2005, 15, 133-9.	0.3	4
123	The effect of insulin-like growth factor 1 incorporated into a hyaluronic acid-based nasal pack on nasal mucosal healing in a healthy sheep model and a sheep model of chronic sinusitis. American Journal of Rhinology & Allergy, 2005, 19, 251-6.	2.3	3
124	The effect of a hyaluronic acid-based nasal pack on mucosal healing in a sheep model of sinusitis. American Journal of Rhinology & Allergy, 2005, 19, 572-6.	2.3	7
125	The effect of an expandable polyvinyl acetate (Merocel) pack on the healing of the nasal mucosa of sheep. American Journal of Rhinology & Allergy, 2005, 19, 577-81.	2.3	6
126	Regulation of MAPK Activation, AP-1 Transcription Factor Expression and Keratinocyte Differentiation in Wounded Fetal Skin. Journal of Investigative Dermatology, 2004, 122, 791-804.	0.3	32

#	Article	IF	CITATIONS
127	Differential Effect of Wounding on Actin and its Associated Proteins, Paxillin and Gelsolin, in Fetal Skin Explants. Journal of Investigative Dermatology, 2003, 120, 1118-1129.	0.3	32
128	The Effect of a Dissolvable Hyaluronic Acid–Based Pack on the Healing of the Nasal Mucosa of Sheep. American Journal of Rhinology & Allergy, 2002, 16, 85-90.	2.3	40
129	The effect of a dissolvable hyaluronic acid-based pack on the healing of the nasal mucosa of sheep. American Journal of Rhinology & Allergy, 2002, 16, 85-90.	2.3	7
130	Hepatocyte growth factor and macrophage-stimulating protein are upregulated during excisional wound repair in rats. Cell and Tissue Research, 2001, 306, 239-250.	1.5	67
131	A study of the normal temporal healing pattern and the mucociliary transport after endoscopic partial and fullâ€ŧhickness removal of nasal mucosa in sheep. Immunology and Cell Biology, 2001, 79, 145-148.	1.0	33
132	Effect of Healing on the Expression of Transforming Growth Factor βs and their Receptors in Chronic Venous Leg Ulcers. Journal of Investigative Dermatology, 2001, 117, 1282-1289.	0.3	87
133	Effect of packing on nasal mucosa of sheep. Journal of Laryngology and Otology, 2000, 114, 506-509.	0.4	90
134	Mitogenic whey extract stimulates wound repair activity in vitro and promotes healing of rat incisional wounds. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R1651-R1660.	0.9	31
135	The proliferative responses of porcine thyroid follicular cells to epidermal growth factor and thyrotrophin reflect the autocrine production of transforming growth factor-β1. Journal of Endocrinology, 1996, 148, 87-94.	1.2	9
136	Porcine thyroid follicular cells in monolayer culture activate the iodide-responsive precursor form of transforming growth factor-l²1. Journal of Endocrinology, 1995, 144, 67-73.	1.2	8
137	Transforming growth factor-β1 synthesis in human thyroid follicular cells: differential effects of iodide and plasminogen on the production of latent and active peptide forms. Journal of Endocrinology, 1994, 141, 183-190.	1.2	22
138	Separation of bovine X and Y sperm based on surface differences. Molecular Reproduction and Development, 1993, 34, 323-328.	1.0	17
139	Transforming growth factor-β1 production in porcine thyroid follicular cells: regulation by intrathyroidal organic iodine. Journal of Molecular Endocrinology, 1992, 9, 197-205.	1.1	26
140	Surface heterogeneity of bovine sperm revealed by aqueous two-phase partition. Bioscience Reports, 1991, 11, 265-273.	1.1	13
141	The Role of Actin Remodelling Proteins in Wound Healing and Tissue Regeneration. , O, , .		7
142	The Role of the Inflammatory Response in Burn Injury. , 0, , .		10
143	Loading and release of porous silicon nanoparticles with Flightless I neutralizing antibodies to aid wound healing. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	1
144	Delivery of therapeutic infliximab from nanostructured porous silicon. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0