
James R Hunt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8562302/publications.pdf

Version: 2024-02-01

IAMES P HUNT

#	Article	IF	CITATIONS
1	Indirect early generation selection for yield in winter wheat. Field Crops Research, 2022, 282, 108505.	2.3	4
2	Impacts of elevated CO2 on plant resistance to nutrient deficiency and toxic ions via root exudates: A review. Science of the Total Environment, 2021, 754, 142434.	3.9	38
3	Evaluation of nitrogen bank, a soil nitrogen management strategy for sustainably closing wheat yield gaps. Field Crops Research, 2021, 261, 108017.	2.3	24
4	Use of spike moisture content to define physiological maturity and quantify progress through grain development in wheat and barley. Crop and Pasture Science, 2021, 72, 95.	0.7	5
5	Exploiting genotype × management interactions to increase rainfed crop production: a case study from south-eastern Australia. Journal of Experimental Botany, 2021, 72, 5189-5207.	2.4	17
6	Modelled Quantification of Different Sources of Nitrogen Inefficiency in Semi-Arid Cropping Systems. Agronomy, 2021, 11, 1222.	1.3	2
7	Low nitrogen use efficiency of dual-purpose crops: Causes and cures. Field Crops Research, 2021, 267, 108129.	2.3	7
8	Nitrogen Fertiliser Immobilisation and Uptake in the Rhizospheres of Wheat and Canola. Agronomy, 2021, 11, 2507.	1.3	0
9	Identifying optimal sowing and flowering periods for barley in Australia: a modelling approach. Agricultural and Forest Meteorology, 2020, 282-283, 107871.	1.9	34
10	Long fallows can maintain whole-farm profit and reduce risk in semi-arid south-eastern Australia. Agricultural Systems, 2020, 178, 102721.	3.2	26
11	Evaluation of G × E × M Interactions to Increase Harvest Index and Yield of Early Sown Wheat. Frontiers in Plant Science, 2020, 11, 994.	1.7	46
12	Phenology and related traits for wheat adaptation. Heredity, 2020, 125, 417-430.	1.2	91
13	Agroecological Advantages of Early-Sown Winter Wheat in Semi-Arid Environments: A Comparative Case Study From Southern Australia and Pacific Northwest United States. Frontiers in Plant Science, 2020, 11, 568.	1.7	21
14	The realities of climate change, conservation agriculture and soil carbon sequestration. Global Change Biology, 2020, 26, 3188-3189.	4.2	28
15	Toward a Better Understanding of Genotype × Environment × Management Interactions—A Global Wheat Initiative Agronomic Research Strategy. Frontiers in Plant Science, 2020, 11, 828.	1.7	31
16	Deep Soil Water-Use Determines the Yield Benefit of Long-Cycle Wheat. Frontiers in Plant Science, 2020, 11, 548.	1.7	19
17	Increase in coleoptile length and establishment by Lcol-A1, a genetic locus with major effect in wheat. BMC Plant Biology, 2019, 19, 332.	1.6	12
18	Using fertiliser to maintain soil inorganic nitrogen can increase dryland wheat yield with little environmental cost. Agriculture, Ecosystems and Environment, 2019, 286, 106644.	2.5	21

James R Hunt

#	Article	IF	CITATIONS
19	A single application of fertiliser or manure to a cropping field has limited long-term effects on soil microbial communities. Soil Research, 2019, 57, 228.	0.6	7
20	Early sowing systems can boost Australian wheat yields despite recent climate change. Nature Climate Change, 2019, 9, 244-247.	8.1	141
21	Elevated CO2 (free-air CO2 enrichment) increases grain yield of aluminium-resistant but not aluminium-sensitive wheat (<i>Triticum aestivum</i>) grown in an acid soil. Annals of Botany, 2019, 123, 461-468.	1.4	6
22	Attribution of crop yield responses to application of organic amendments: A critical review. Soil and Tillage Research, 2019, 186, 135-145.	2.6	76
23	Fast winter wheat phenology can stabilise flowering date and maximise grain yield in semi-arid Mediterranean and temperate environments. Field Crops Research, 2018, 223, 12-25.	2.3	66
24	Making sense of cosmic-ray soil moisture measurements and eddy covariance data with regard to crop water use and field water balance. Agricultural Water Management, 2018, 204, 271-280.	2.4	14
25	Ability of alleles of PPD1 and VRN1 genes to predict flowering time in diverse Australian wheat (Triticum aestivum) cultivars in controlled environments. Crop and Pasture Science, 2018, 69, 1061.	0.7	22
26	The impact of elevated CO2 on acid-soil tolerance of hexaploid wheat (Triticum aestivum L.) genotypes varying in organic anion efflux. Plant and Soil, 2018, 428, 401-413.	1.8	8
27	Opportunities to reduce heat damage in rain-fed wheat crops based on plant breeding and agronomic management. Field Crops Research, 2018, 224, 126-138.	2.3	54
28	Genetic gains in NSW wheat cultivars from 1901 to 2014 as revealed from synchronous flowering during the optimum period. European Journal of Agronomy, 2018, 98, 1-13.	1.9	46
29	Crop yield responses to surface and subsoil applications of poultry litter and inorganic fertiliser in south-eastern Australia. Crop and Pasture Science, 2018, 69, 303.	0.7	22
30	Genotype × management strategies to stabilise the flowering time of wheat in the south-eastern Australian wheatbelt. Crop and Pasture Science, 2018, 69, 547.	0.7	21
31	Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. Field Crops Research, 2017, 209, 108-119.	2.3	127
32	Winter wheat cultivars in Australian farming systems: a review. Crop and Pasture Science, 2017, 68, 501.	0.7	28
33	Soil mineral nitrogen benefits derived from legumes and comparisons of the apparent recovery of legume or fertiliser nitrogen by wheat. Soil Research, 2017, 55, 600.	0.6	43
34	Sheep grazing on crop residues do not reduce crop yields in no-till, controlled traffic farming systems in an equi-seasonal rainfall environment. Field Crops Research, 2016, 196, 22-32.	2.3	24
35	Corrigendum to: Optimising grain yield and grazing potential of crops across Australia's high-rainfall zone: a simulation analysis. 1. Wheat. Crop and Pasture Science, 2016, 67, 117.	0.7	2
36	Effect of defoliation by grazing or shoot removal on the root growth of field-grown wheat (Triticum aestivum L.). Crop and Pasture Science, 2015, 66, 249.	0.7	29

JAMES R HUNT

#	Article	IF	CITATIONS
37	Forage and grain yield of grazed or defoliated spring and winter cereals in a winter-dominant, low-rainfall environment. Crop and Pasture Science, 2015, 66, 308.	0.7	17
38	Break crops and rotations for wheat. Crop and Pasture Science, 2015, 66, 523.	0.7	277
39	Optimising grain yield and grazing potential of crops across Australia's high-rainfall zone: a simulation analysis. 1. Wheat. Crop and Pasture Science, 2015, 66, 332.	0.7	67
40	APSIM – Evolution towards a new generation of agricultural systems simulation. Environmental Modelling and Software, 2014, 62, 327-350.	1.9	1,173
41	Yield improvement and adaptation of wheat to water-limited environments in Australia—a case study. Crop and Pasture Science, 2014, 65, 676.	0.7	101
42	Sense and nonsense in conservation agriculture: Principles, pragmatism and productivity in Australian mixed farming systems. Agriculture, Ecosystems and Environment, 2014, 187, 133-145.	2.5	152
43	Leading farmers in South East Australia have closed the exploitable wheat yield gap: Prospects for further improvement. Field Crops Research, 2014, 164, 1-11.	2.3	67
44	Improving water productivity in the Australian Grains industry—a nationally coordinated approach. Crop and Pasture Science, 2014, 65, 583.	0.7	79
45	Importance of distribution function selection for hydrothermal time models of seed germination. Weed Research, 2013, 53, 89-101.	0.8	33
46	Summer fallow weed control and residue management impacts on winter crop yield though soil water and N accumulation in a winter-dominant, low rainfall region of southern Australia. Crop and Pasture Science, 2013, 64, 922.	0.7	65
47	Factors affecting the potential contributions of N2 fixation by legumes in Australian pasture systems. Crop and Pasture Science, 2012, 63, 759.	0.7	77
48	Fallow management in dryland agriculture: Explaining soil water accumulation using a pulse paradigm. Field Crops Research, 2012, 130, 68-79.	2.3	54
49	Impacts of soil damage by grazing livestock on crop productivity. Soil and Tillage Research, 2011, 113, 19-29.	2.6	107
50	Re-evaluating the contribution of summer fallow rain to wheat yield in southern Australia. Crop and Pasture Science, 2011, 62, 915.	0.7	87
51	Increasing productivity by matching farming system management and genotype in water-limited environments. Journal of Experimental Botany, 2010, 61, 4129-4143.	2.4	196
52	Re-inventing model-based decision support with Australian dryland farmers. 3. Relevance of APSIM to commercial crops. Crop and Pasture Science, 2009, 60, 1044.	0.7	80
53	Heliotropium europaeum only germinates following sufficient rainfall to allow reproduction. Journal of Arid Environments, 2009, 73, 602-610.	1.2	17
54	Potential to improve on-farm wheat yield and WUE in Australia. Crop and Pasture Science, 2009, 60, 708.	0.7	124

	JAMES	James R Hunt		
#	Article	IF	CITATIONS	
55	Re-inventing model-based decision support with Australian dryland farmers. 4. Yield Prophet® helps farmers monitor and manage crops in a variable climate. Crop and Pasture Science, 2009, 60, 1057.	0.7	140	