
Renaud Poincloux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8562115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. Journal of Cell Science, 2009, 122, 3015-3024.	1.2	422
2	Matrix Architecture Dictates Three-Dimensional Migration Modes of Human Macrophages: Differential Involvement of Proteases and Podosome-Like Structures. Journal of Immunology, 2010, 184, 1049-1061.	0.4	309
3	Mycobacterial P1-Type ATPases Mediate Resistance to Zinc Poisoning in Human Macrophages. Cell Host and Microbe, 2011, 10, 248-259.	5.1	304
4	Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1943-1948.	3.3	254
5	MT1-MMP-Dependent Invasion Is Regulated by TI-VAMP/VAMP7. Current Biology, 2008, 18, 926-931.	1.8	186
6	Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes. Nature Communications, 2014, 5, 5343.	5.8	176
7	Diaphanous-Related Formins Are Required for Invadopodia Formation and Invasion of Breast Tumor Cells. Cancer Research, 2009, 69, 2792-2800.	0.4	175
8	Mycobacterium tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection. PLoS Pathogens, 2014, 10, e1003928.	2.1	148
9	Implication of Metastasis Suppressor <i>NM23-H1</i> in Maintaining Adherens Junctions and Limiting the Invasive Potential of Human Cancer Cells. Cancer Research, 2010, 70, 7710-7722.	0.4	132
10	Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16+ monocyte population via the IL-10/STAT3 axis. Cell Research, 2015, 25, 1333-1351.	5.7	127
11	Macrophage podosomes go 3D. European Journal of Cell Biology, 2011, 90, 224-236.	1.6	122
12	Spontaneous Contractility-Mediated Cortical Flow Generates Cell Migration in Three-Dimensional Environments. Biophysical Journal, 2011, 101, 1041-1045.	0.2	119
13	Three-dimensional migration of macrophages requires Hck for podosome organization and extracellular matrix proteolysis. Blood, 2010, 115, 1444-1452.	0.6	116
14	Frustrated endocytosis controls contractility-independent mechanotransduction at clathrin-coated structures. Nature Communications, 2018, 9, 3825.	5.8	88
15	Activation of the Lysosome-Associated p61Hck Isoform Triggers the Biogenesis of Podosomes. Traffic, 2005, 6, 682-694.	1.3	86
16	HIV-1 reprograms the migration of macrophages. Blood, 2015, 125, 1611-1622.	0.6	82
17	Macrophage Mesenchymal Migration Requires Podosome Stabilization by Filamin A. Journal of Biological Chemistry, 2012, 287, 13051-13062.	1.6	78
18	Tuberculosis Exacerbates HIV-1 Infection through IL-10/STAT3-Dependent Tunneling Nanotube Formation in Macrophages. Cell Reports, 2019, 26, 3586-3599.e7.	2.9	76

Renaud Poincloux

#	Article	IF	CITATIONS
19	Podosome Force Generation Machinery: A Local Balance between Protrusion at the Core and Traction at the Ring. ACS Nano, 2017, 11, 4028-4040.	7.3	72
20	C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E540-E549.	3.3	67
21	Probing the mechanical landscape – new insights into podosome architecture and mechanics. Journal of Cell Science, 2019, 132, .	1.2	66
22	Hematopoietic cell kinase (Hck) isoforms and phagocyte duties – From signaling and actin reorganization to migration and phagocytosis. European Journal of Cell Biology, 2008, 87, 527-542.	1.6	61
23	The C-Type Lectin Receptor DC-SIGN Has an Anti-Inflammatory Role in Human M(IL-4) Macrophages in Response to Mycobacterium tuberculosis. Frontiers in Immunology, 2018, 9, 1123.	2.2	51
24	Lymphocyte-specific protein 1 regulates mechanosensory oscillation of podosomes and actin isoform-based actomyosin symmetry breaking. Nature Communications, 2018, 9, 515.	5.8	50
25	Working Together: Spatial Synchrony in the Force and Actin Dynamics of Podosome First Neighbors. ACS Nano, 2015, 9, 3800-3813.	7.3	49
26	Re-arrangements of podosome structures are observed when Hck is activated in myeloid cells. European Journal of Cell Biology, 2006, 85, 327-332.	1.6	37
27	Podosomes, But Not the Maturation Status, Determine the Protease-Dependent 3D Migration in Human Dendritic Cells. Frontiers in Immunology, 2018, 9, 846.	2.2	37
28	Super-resolved live-cell imaging using random illumination microscopy. Cell Reports Methods, 2021, 1, 100009.	1.4	36
29	Tuberculosis-associated IFN-I induces Siglec-1 on tunneling nanotubes and favors HIV-1 spread in macrophages. ELife, 2020, 9, .	2.8	31
30	Asb2α–Filamin A Axis Is Essential for Actin Cytoskeleton Remodeling During Heart Development. Circulation Research, 2018, 122, e34-e48.	2.0	29
31	Hck contributes to bone homeostasis by controlling the recruitment of osteoclast precursors. FASEB Journal, 2013, 27, 3608-3618.	0.2	28
32	The Protease-Dependent Mesenchymal Migration of Tumor-Associated Macrophages as a Target in Cancer Immunotherapy. Cancer Immunology Research, 2018, 6, 1337-1351.	1.6	24
33	Tyrosine-phosphorylated STAT5 accumulates on podosomes in Hck-transformed fibroblasts and chronic myeloid leukemia cells. Journal of Cellular Physiology, 2007, 213, 212-220.	2.0	23
34	Fungal lectin, XCL, is internalized via clathrin-dependent endocytosis and facilitates uptake of other molecules. European Journal of Cell Biology, 2003, 82, 515-522.	1.6	22
35	Queuosine Biosynthesis Is Required for Sinorhizobium meliloti-Induced Cytoskeletal Modifications on HeLa Cells and Symbiosis with Medicago truncatula. PLoS ONE, 2013, 8, e56043.	1.1	22
36	Evaluation of the force and spatial dynamics of macrophage podosomes by multi-particle tracking. Methods, 2016, 94, 75-84.	1.9	15

Renaud Poincloux

#	ARTICLE	IF	CITATIONS
37	Elasticity of podosome actin networks produces nanonewton protrusive forces. Nature Communications, 2022, 13, .	5.8	14
38	Cellular and molecular actors of myeloid cell fusion: podosomes and tunneling nanotubes call the tune. Cellular and Molecular Life Sciences, 2021, 78, 6087-6104.	2.4	12
39	The oncogenic activity of the Src family kinase Hck requires the cooperative action of the plasma membrane- and lysosome-associated isoforms. European Journal of Cancer, 2009, 45, 321-327.	1.3	11
40	Genetic engineering of Hoxb8-immortalized hematopoietic progenitors – a potent tool to study macrophage tissue migration. Journal of Cell Science, 2020, 133, .	1.2	8
41	Phagocytosis is coupled to the formation of phagosome-associated podosomes and a transient disruption of podosomes in human macrophages. European Journal of Cell Biology, 2021, 100, 151161.	1.6	8
42	HIV-1-Infected Human Macrophages, by Secreting RANK-L, Contribute to Enhanced Osteoclast Recruitment. International Journal of Molecular Sciences, 2020, 21, 3154.	1.8	7
43	Nanoscale Forces during Confined Cell Migration. Nano Letters, 2018, 18, 6326-6333.	4.5	6
44	Dysregulation of the IFN-I signaling pathway by <i>Mycobacterium tuberculosis</i> leads to exacerbation of HIV-1 infection of macrophages. Journal of Leukocyte Biology, 2022, 112, 1329-1342.	1.5	6
45	Nanoscale architecture and coordination of actin cores within the sealing zone of human osteoclasts. ELife, 0, 11, .	2.8	3
46	HIV-1 Nef alters podosomes and promotes the mesenchymal migration in human macrophages. Retrovirology, 2013, 10, .	0.9	2
47	Protrusion Force Microscopy: A Method to Quantify Forces Developed by Cell Protrusions. Journal of Visualized Experiments, 2018, , .	0.2	1
48	Tuberculosis Boosts HIV-1 Production by Macrophages Through IL-10/STAT3-Dependent Tunneling Nanotube Formation. SSRN Electronic Journal, 0, , .	0.4	1