Gabriele P Stiller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8561888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MIPAS: an instrument for atmospheric and climate research. Atmospheric Chemistry and Physics, 2008, 8, 2151-2188.	4.9	596
2	The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment: Deployment on the ATLAS space shuttle missions. Geophysical Research Letters, 1996, 23, 2333-2336.	4.0	192
3	Optimized forward model and retrieval scheme for MIPAS near-real-time data processing. Applied Optics, 2000, 39, 1323.	2.1	188
4	Observed temporal evolution of global mean age of stratospheric air for the 2002 to 2010 period. Atmospheric Chemistry and Physics, 2012, 12, 3311-3331.	4.9	181
5	Short- and medium-term atmospheric constituent effects of very large solar proton events. Atmospheric Chemistry and Physics, 2008, 8, 765-785.	4.9	156
6	Sensitivity of trace gas abundances retrievals from infrared limb emission spectra to simplifying approximations in radiative transfer modelling. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 72, 249-280.	2.3	148
7	Composition changes after the "Halloween" solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study. Atmospheric Chemistry and Physics, 2011, 11, 9089-9139.	4.9	145
8	Observation of NOxenhancement and ozone depletion in the Northern and Southern Hemispheres after the October-November 2003 solar proton events. Journal of Geophysical Research, 2005, 110, .	3.3	132
9	Downward transport of upper atmospheric NOxinto the polar stratosphere and lower mesosphere during the Antarctic 2003 and Arctic 2002/2003 winters. Journal of Geophysical Research, 2005, 110, .	3.3	131
10	Processâ€evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. Journal of Geophysical Research, 2012, 117, .	3.3	114
11	CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations. Atmospheric Chemistry and Physics, 2008, 8, 2569-2594.	4.9	107
12	Global distribution of mean age of stratospheric air from MIPAS SF ₆ measurements. Atmospheric Chemistry and Physics, 2008, 8, 677-695.	4.9	105
13	Ammonium nitrate particles formed in upper troposphere from ground ammonia sources during Asian monsoons. Nature Geoscience, 2019, 12, 608-612.	12.9	95
14	An update on ozone profile trends for the period 2000 to 2016. Atmospheric Chemistry and Physics, 2017, 17, 10675-10690.	4.9	93
15	Arctic winter 2010/2011 at the brink of an ozone hole. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	88
16	Spectroscopic evidence for NAT, STS, and ice in MIPAS infrared limb emission measurements of polar stratospheric clouds. Atmospheric Chemistry and Physics, 2006, 6, 1201-1219.	4.9	82
17	Drift-corrected trends and periodic variations in MIPAS IMK/IAA ozone measurements. Atmospheric Chemistry and Physics, 2014, 14, 2571-2589.	4.9	81
18	Evidence for dynamical coupling from the lower atmosphere to the thermosphere during a major stratospheric warming. Geophysical Research Letters, 2010, 37, .	4.0	80

#	Article	IF	CITATIONS
19	Global peroxyacetyl nitrate (PAN) retrieval in the upper troposphere from limb emission spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Atmospheric Chemistry and Physics, 2007, 7, 2775-2787.	4.9	77
20	Carbon monoxide distributions from the upper troposphere to the mesosphere inferred from 4.7 μm non-local thermal equilibrium emissions measured by MIPAS on Envisat. Atmospheric Chemistry and Physics, 2009, 9, 2387-2411.	4.9	77
21	Processâ€evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopic observations: 2. Using isotopic diagnostics to understand the mid and upper tropospheric moist bias in the tropics and subtropics. Journal of Geophysical Research, 2012, 117, .	3.3	77
22	Validation of ACE-FTS N ₂ O measurements. Atmospheric Chemistry and Physics, 2008, 8, 4759-4786.	4.9	76
23	Mesospheric and stratospheric NO _{<i>y</i>} produced by energetic particle precipitation during 2002–2012. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4429-4446.	3.3	75
24	Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements. Atmospheric Measurement Techniques, 2012, 5, 289-320.	3.1	74
25	Reassessment of MIPAS age of air trends and variability. Atmospheric Chemistry and Physics, 2015, 15, 13161-13176.	4.9	73
26	Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005. Atmospheric Chemistry and Physics, 2011, 11, 6153-6166.	4.9	71
27	The 1994 northern midlatitude budget of stratospheric chlorine derived from ATMOS/ATLAS-3 observations. Geophysical Research Letters, 1996, 23, 2357-2360.	4.0	68
28	Past changes in the vertical distribution of ozone – Part 1: Measurement techniques, uncertainties and availability. Atmospheric Measurement Techniques, 2014, 7, 1395-1427.	3.1	67
29	Evidence of scattering of tropospheric radiation by PSCs in mid-IR limb emission spectra: MIPAS-B observations and KOPRA simulations. Geophysical Research Letters, 2002, 29, 119-1-119-4.	4.0	62
30	Nitric acid trihydrate nucleation and denitrification in the Arctic stratosphere. Atmospheric Chemistry and Physics, 2014, 14, 1055-1073.	4.9	62
31	Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses. Atmospheric Chemistry and Physics, 2007, 7, 3519-3536.	4.9	60
32	GRANADA: A Generic RAdiative traNsfer AnD non-LTE population algorithm. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 1771-1817.	2.3	60
33	Validation of MIPAS-ENVISAT NO ₂ operational data. Atmospheric Chemistry and Physics, 2007, 7, 3261-3284.	4.9	57
34	Long-range transport pathways of tropospheric source gases originating in Asia into the northern lower stratosphere during the Asian monsoon season 2012. Atmospheric Chemistry and Physics, 2016, 16, 15301-15325.	4.9	57
35	Lagrangian simulations of the transport of young air masses to the top of the Asian monsoon anticyclone and into the tropical pipe. Atmospheric Chemistry and Physics, 2019, 19, 6007-6034.	4.9	57
36	Stratospheric chlorine partitioning: Constraints from shuttle-borne measurements of [HCl], [ClNO3], and [ClO]. Geophysical Research Letters, 1996, 23, 2361-2364.	4.0	56

#	Article	IF	CITATIONS
37	HDO measurements with MIPAS. Atmospheric Chemistry and Physics, 2007, 7, 2601-2615.	4.9	56
38	Experimental evidence of perturbed odd hydrogen and chlorine chemistry after the October 2003 solar proton events. Journal of Geophysical Research, 2005, 110, .	3.3	55
39	First airborne water vapor lidar measurements in the tropical upper troposphere and mid-latitudes lower stratosphere: accuracy evaluation and intercomparisons with other instruments. Atmospheric Chemistry and Physics, 2008, 8, 5245-5261.	4.9	55
40	HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009. Atmospheric Chemistry and Physics, 2017, 17, 3573-3604.	4.9	55
41	Harmonized dataset of ozone profiles from satellite limb and occultation measurements. Earth System Science Data, 2013, 5, 349-363.	9.9	52
42	First detection of ammonia (NH ₃) in the Asian summer monsoon upper troposphere. Atmospheric Chemistry and Physics, 2016, 16, 14357-14369.	4.9	51
43	Tropical dehydration processes constrained by the seasonality of stratospheric deuterated water. Nature Geoscience, 2010, 3, 262-266.	12.9	50
44	A new non-LTE retrieval method for atmospheric parameters from mipas-envisat emission spectra. Advances in Space Research, 2001, 27, 1099-1104.	2.6	49
45	Bias determination and precision validation of ozone profiles from MIPAS-Envisat retrieved with the IMK-IAA processor. Atmospheric Chemistry and Physics, 2007, 7, 3639-3662.	4.9	49
46	Technical Note: Trend estimation from irregularly sampled, correlated data. Atmospheric Chemistry and Physics, 2010, 10, 6737-6747.	4.9	49
47	Global CFC-11 (CCl ₃ F) and CFC-12 (CCl ₂ F ₂) measurements with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS): retrieval, climatologies and trends. Atmospheric Chemistry and Physics, 2012, 12, 11857-11875.	4.9	49
48	Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model. Atmospheric Chemistry and Physics, 2017, 17, 883-898.	4.9	49
49	On the assessment and uncertainty of atmospheric trace gas burden measurements with high resolution infrared solar occultation spectra from space by the ATMOS Experiment. Geophysical Research Letters, 1996, 23, 2337-2340.	4.0	46
50	Global observations of thermospheric temperature and nitric oxide from MIPAS spectra at 5.3 <i>μ</i> m. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	46
51	Optimized spectral microwindows for data analysis of the Michelson Interferometer for Passive Atmospheric Sounding on the Environmental Satellite. Applied Optics, 2000, 39, 5531.	2.1	45
52	Global distributions of C ₂ H ₆ , C ₂ H ₂ , HCN, and PAN retrieved from MIPAS reduced spectral resolution measurements. Atmospheric Measurement	3.1	44
53	Techniques, 2012, 5, 723-734. Merged SAGEÂII, Ozone_cci and OMPS ozone profile dataset and evaluation of ozone trends in the stratosphere. Atmospheric Chemistry and Physics, 2017, 17, 12533-12552.	4.9	44
54	ATMOS/ATLAS-3 observations of long-lived tracers and descent in the Antarctic Vortex in November 1994. Geophysical Research Letters, 1996, 23, 2341-2344.	4.0	42

#	Article	IF	CITATIONS
55	Global distribution and variability of formic acid as observed by MIPASâ€ENVISAT. Journal of Geophysical Research, 2010, 115, .	3.3	41
56	Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results. Atmospheric Measurement Techniques, 2011, 4, 2579-2605.	3.1	41
57	The solar proton events in 2012 as observed by MIPAS. Geophysical Research Letters, 2013, 40, 2339-2343.	4.0	41
58	Validation of ozone data from the Superconducting Submillimeterâ€Wave Limbâ€Emission Sounder (SMILES). Journal of Geophysical Research D: Atmospheres, 2013, 118, 5750-5769.	3.3	41
59	A comparison of measurements from ATMOS and instruments aboard the ER-2 aircraft: Tracers of atmospheric transport. Geophysical Research Letters, 1996, 23, 2389-2392.	4.0	39
60	Three-Dimensional Model Study of the Antarctic Ozone Hole in 2002 and Comparison with 2000. Journals of the Atmospheric Sciences, 2005, 62, 822-837.	1.7	39
61	About the increase of HNO ₃ in the stratopause region during the Halloween 2003 solar proton event. Geophysical Research Letters, 2008, 35, .	4.0	39
62	Ozone loss driven by nitrogen oxides and triggered by stratospheric warmings can outweigh the effect of halogens. Journal of Geophysical Research, 2007, 112, .	3.3	38
63	Sulfur dioxide (SO ₂) from MIPAS in the upper troposphere and lower stratosphere 2002–2012. Atmospheric Chemistry and Physics, 2015, 15, 7017-7037.	4.9	38
64	Seasonal variations of water vapor in the lower stratosphere inferred from ATMOS/ATLAS-3 measurements of H2O and CH4. Geophysical Research Letters, 1996, 23, 2401-2404.	4.0	37
65	Trace gas transport in the Arctic Vortex inferred from ATMOS ATLAS-2 observations during April 1993. Geophysical Research Letters, 1996, 23, 2345-2348.	4.0	36
66	Remote sensing of the middle atmosphere with MIPAS. , 2003, , .		35
67	NO _{<i>y</i>} production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010. Atmospheric Chemistry and Physics, 2018, 18, 1115-1147.	4.9	35
68	The hydrogen budget of the stratosphere inferred from ATMOS measurements of H2O and CH4. Geophysical Research Letters, 1996, 23, 2405-2408.	4.0	34
69	Shift of subtropical transport barriers explains observed hemispheric asymmetry of decadal trends of age of air. Atmospheric Chemistry and Physics, 2017, 17, 11177-11192.	4.9	34
70	Model simulations of stratospheric ozone loss caused by enhanced mesospheric NO _x during Arctic Winter 2003/2004. Atmospheric Chemistry and Physics, 2008, 8, 5279-5293.	4.9	33
71	Energetic particle induced intra-seasonal variability of ozone inside the Antarctic polar vortex observed in satellite data. Atmospheric Chemistry and Physics, 2015, 15, 3327-3338.	4.9	33
72	Overview: Estimating and reporting uncertainties in remotely sensed atmospheric composition and temperature. Atmospheric Measurement Techniques, 2020, 13, 4393-4436.	3.1	31

#	Article	IF	CITATIONS
73	On the quality of MIPAS kinetic temperature in the middle atmosphere. Atmospheric Chemistry and Physics, 2012, 12, 6009-6039.	4.9	30
74	MIPAS temperature from the stratosphere to the lower thermosphere: Comparison of vM21 with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and lidar measurements. Atmospheric Measurement Techniques, 2014, 7, 3633-3651.	3.1	30
75	Increase of stratospheric carbon tetrafluoride (CF4) based on ATMOS observations from space. Geophysical Research Letters, 1996, 23, 2353-2356.	4.0	29
76	Circulation anomalies in the Southern Hemisphere and ozone changes. Atmospheric Chemistry and Physics, 2013, 13, 10677-10688.	4.9	29
77	Sulfur dioxide (SO ₂) as observed by MIPAS/Envisat: temporal development and spatial distribution at 15–45 km altitude. Atmospheric Chemistry and Physics, 2013, 13, 10405-10423.	4.9	29
78	Modelling of non-LTE limb spectra of i.r. ozone bands for the MIPAS space experiment. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 59, 405-422.	2.3	28
79	Validation of water vapour profiles (version 13) retrieved by the IMK/IAA scientific retrieval processor based on full resolution spectra measured by MIPAS on board Envisat. Atmospheric Measurement Techniques, 2009, 2, 379-399.	3.1	28
80	Impact of temperature field inhomogeneities on the retrieval of atmospheric species from MIPAS IR limb emission spectra. Atmospheric Measurement Techniques, 2010, 3, 1487-1507.	3.1	28
81	Validation of stratospheric and mesospheric ozone observed by SMILES from International Space Station. Atmospheric Measurement Techniques, 2013, 6, 2311-2338.	3.1	28
82	Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra. Journal of Geophysical Research, 1995, 100, 3107.	3.3	27
83	Karlsruhe optimized and precise radiative transfer algorithm. Part I: requirements, justification, and model error estimation. Proceedings of SPIE, 1998, , .	0.8	27
84	Cross-validation of MIPAS/ENVISAT and GPS-RO/CHAMP temperature profiles. Journal of Geophysical Research, 2004, 109, .	3.3	27
85	The millennium water vapour drop in chemistry–climate model simulations. Atmospheric Chemistry and Physics, 2016, 16, 8125-8140.	4.9	27
86	Global HCFC-22 measurements with MIPAS: retrieval, validation, global distribution and its evolution over 2005–2012. Atmospheric Chemistry and Physics, 2016, 16, 3345-3368.	4.9	27
87	The strength of the meridional overturning circulation of the stratosphere. Nature Geoscience, 2017, 10, 663-667.	12.9	27
88	Vibrationally excited ozone in the middle atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 202-212.	1.6	26
89	Retrieval of global upper tropospheric and stratospheric formaldehyde (H ₂ CO) distributions from high-resolution MIPAS-Envisat spectra. Atmospheric Chemistry and Physics, 2008, 8, 463-470.	4.9	26
90	Mesospheric N ₂ O enhancements as observed by MIPAS on Envisat during the polar winters in 2002–2004. Atmospheric Chemistry and Physics, 2008, 8, 5787-5800.	4.9	26

#	Article	IF	CITATIONS
91	Comparison of HDO measurements from Envisat/MIPAS with observations by Odin/SMR and SCISAT/ACE-FTS. Atmospheric Measurement Techniques, 2011, 4, 1855-1874.	3.1	25
92	Global carbonyl sulfide (OCS) measured by MIPAS/Envisat during 2002–2012. Atmospheric Chemistry and Physics, 2017, 17, 2631-2652.	4.9	25
93	The Australian bushfires of February 2009: MIPAS observations and GEM-AQ model results. Atmospheric Chemistry and Physics, 2013, 13, 1637-1658.	4.9	24
94	The SPARC water vapour assessment II: comparison of annual, semi-annual and quasi-biennial variations in stratospheric and lower mesospheric water vapour observed from satellites. Atmospheric Measurement Techniques, 2017, 10, 1111-1137.	3.1	24
95	MIPAS observations of volcanic sulfate aerosol and sulfur dioxide in the stratosphere. Atmospheric Chemistry and Physics, 2018, 18, 1217-1239.	4.9	24
96	Karlsruhe optimized and precise radiative transfer algorithm: II. Interface to retrieval applications. , 1998, , .		24
97	Validation of MIPAS IMK/IAA V5R_O3_224 ozone profiles. Atmospheric Measurement Techniques, 2014, 7, 3971-3987.	3.1	24
98	CO2 line mixing in MIPAS limb emission spectra and its influence on retrieval of atmospheric parameters. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 59, 215-230.	2.3	23
99	Analysis of nonlocal thermodynamic equilibrium CO 4.7μm fundamental, isotopic, and hot band emissions measured by the Michelson Interferometer for Passive Atmospheric Sounding on Envisat. Journal of Geophysical Research, 2007, 112, .	3.3	23
100	Energetic particle precipitation in ECHAM5/MESSy – Part 2: Solar proton events. Atmospheric Chemistry and Physics, 2010, 10, 7285-7302.	4.9	23
101	Total hydrogen budget of the equatorial upper stratosphere. Journal of Geophysical Research, 2010, 115, .	3.3	23
102	Evaluation of column-averaged methane in models and TCCON with a focus on the stratosphere. Atmospheric Measurement Techniques, 2016, 9, 4843-4859.	3.1	23
103	A comparison of night-time GOMOS and MIPAS ozone profiles in the stratosphere and mesosphere. Advances in Space Research, 2005, 36, 958-966.	2.6	22
104	Comment on "Origin of the January–April 2004 increase in stratospheric NO2observed in northern polar latitudes―by Jean-Baptiste Renard et al Geophysical Research Letters, 2007, 34, .	4.0	22
105	Retrieval of stratospheric and mesospheric O3 from high resolution MIPAS spectra at 15 and 10 μm. Advances in Space Research, 2005, 36, 943-951.	2.6	21
106	Seasonal and interannual variations in HCN amounts in the upper troposphere and lower stratosphere observed by MIPAS. Atmospheric Chemistry and Physics, 2015, 15, 563-582.	4.9	21
107	Atmospheric non-local thermodynamic equilibrium emissions as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Comptes Rendus Physique, 2005, 6, 848-863.	0.9	20
108	A semi-empirical model for mesospheric and stratospheric NO _{<i>y</i>} produced by energetic particle precipitation. Atmospheric Chemistry and Physics, 2016, 16, 8667-8693.	4.9	20

#	Article	IF	CITATIONS
109	Methane and nitrous oxide retrievals from MIPAS-ENVISAT. Atmospheric Measurement Techniques, 2015, 8, 4657-4670.	3.1	20
110	The MIPAS HOCl climatology. Atmospheric Chemistry and Physics, 2012, 12, 1965-1977.	4.9	19
111	Validation of middle-atmospheric campaign-based water vapour measured by the ground-based microwave radiometer MIAWARA-C. Atmospheric Measurement Techniques, 2013, 6, 1725-1745.	3.1	18
112	Variability of NO _x in the polar middle atmosphere from October 2003 to March 2004: vertical transport vs. local production by energetic particles. Atmospheric Chemistry and Physics, 2014, 14, 7681-7692.	4.9	18
113	Validation of MIPAS IMK/IAA methane profiles. Atmospheric Measurement Techniques, 2015, 8, 5251-5261.	3.1	18
114	Validation of revised methane and nitrous oxide profiles from MIPAS–ENVISAT. Atmospheric Measurement Techniques, 2016, 9, 765-779.	3.1	18
115	Non-local thermodynamic equilibrium limb radiances for the mipas instrument on Envisat-1. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 59, 377-403.	2.3	17
116	Influences of the Indian Summer Monsoon on Water Vapor and Ozone Concentrations in the UTLS as Simulated by Chemistry–Climate Models. Journal of Climate, 2010, 23, 3525-3544.	3.2	17
117	Validation of MIPAS-ENVISAT H ₂ O operational data collected between July 2002 and March 2004. Atmospheric Chemistry and Physics, 2013, 13, 5791-5811.	4.9	17
118	Is there a solar signal in lower stratospheric water vapour?. Atmospheric Chemistry and Physics, 2015, 15, 9851-9863.	4.9	17
119	Comparison of nitric oxide measurements in the mesosphere and lower thermosphere from ACE-FTS, MIPAS, SCIAMACHY, and SMR. Atmospheric Measurement Techniques, 2015, 8, 4171-4195.	3.1	17
120	Karlsruhe optimized and precise radiative transfer algorithm: Part III: ADDLIN and TRANSF algorithms for modeling spectral transmittance and radiance. , 1998, 3501, 247.		16
121	Measurements of polar mesospheric clouds in infrared emission by MIPAS/ENVISAT. Journal of Geophysical Research, 2009, 114, .	3.3	15
122	MIPAS IMK/IAA CFC-11 (CCl ₃ F) and CFC-12 (CCl ₂ F ₂) measurements: accuracy, precision and long-term stability. Atmospheric Measurement Techniques, 2016, 9, 3355-3389.	3.1	15
123	Comparison of ECHAM5/MESSy Atmospheric Chemistry (EMAC) simulations of the Arctic winter 2009/2010 and 2010/2011 with Envisat/MIPAS and Aura/MLS observations. Atmospheric Chemistry and Physics, 2018, 18, 8873-8892.	4.9	15
124	HOCl chemistry in the Antarctic Stratospheric Vortex 2002, as observed with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Atmospheric Chemistry and Physics, 2009, 9, 1817-1829.	4.9	14
125	Trend differences in lower stratospheric water vapour between Boulder and the zonal mean and their role in understanding fundamental observational discrepancies. Atmospheric Chemistry and Physics, 2018, 18, 8331-8351.	4.9	14
126	Measurement report: regional trends of stratospheric ozone evaluated using the MErged GRIdded Dataset of Ozone Profiles (MEGRIDOP). Atmospheric Chemistry and Physics, 2021, 21, 6707-6720.	4.9	14

#	Article	IF	CITATIONS
127	Lifetime and production rate of NO _x in the upper stratosphere and lower mesosphere in the polar spring/summer after the solar proton event in October–November 2003. Atmospheric Chemistry and Physics, 2013, 13, 2531-2539.	4.9	13
128	Variations in middle atmospheric water vapor from 2004 to 2013. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,285.	3.3	13
129	Relative drifts and biases between six ozone limb satellite measurements from the last decade. Atmospheric Measurement Techniques, 2015, 8, 4369-4381.	3.1	13
130	The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements. Atmospheric Chemistry and Physics, 2017, 17, 14543-14558.	4.9	13
131	The SPARC water vapour assessment II: profile-to-profile comparisons of stratospheric and lower mesospheric water vapour data sets obtained from satellites. Atmospheric Measurement Techniques, 2019, 12, 2693-2732.	3.1	13
132	Improved FTIR retrieval strategy for HCFC-22 (CHClF ₂), comparisons with in situ and satellite datasets with the support of models, and determination of its long-term trend above Jungfraujoch. Atmospheric Chemistry and Physics, 2019, 19, 12309-12324.	4.9	13
133	IMK/IAA MIPAS temperature retrieval version 8: nominal measurements. Atmospheric Measurement Techniques, 2021, 14, 4111-4138.	3.1	13
134	Atmospheric effects of energetic particle precipitation in the Arctic winter 1978–1979 revisited. Journal of Geophysical Research, 2012, 117, .	3.3	12
135	UTLS water vapour from SCIAMACHY limb measurementsV3.01 (2002–2012). Atmospheric Measurement Techniques, 2016, 9, 133-158.	3.1	12
136	The SPARC water vapour assessment II: comparison of stratospheric and lower mesospheric water vapour time series observed from satellites. Atmospheric Measurement Techniques, 2018, 11, 4435-4463.	3.1	12
137	Probability density functions of long-lived tracer observations from satellite in the subtropical barrier region: data intercomparison. Atmospheric Chemistry and Physics, 2011, 11, 10579-10598.	4.9	11
138	The natural greenhouse effect of atmospheric oxygen (O ₂) and nitrogen (N ₂). Geophysical Research Letters, 2012, 39, .	4.0	11
139	Retrieval and satellite intercomparison of O ₃ measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia. Atmospheric Measurement Techniques, 2013, 6, 495-509.	3.1	11
140	Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature. Atmospheric Chemistry and Physics, 2016, 16, 101-121.	4.9	11
141	Ground-based FTIR retrievals of SF ₆ on Reunion Island. Atmospheric Measurement Techniques, 2018, 11, 651-662.	3.1	11
142	MIPAS observations of ozone in the middle atmosphere. Atmospheric Measurement Techniques, 2018, 11, 2187-2212.	3.1	11
143	Measurements of global distributions of polar mesospheric clouds during 2005–2012 by MIPAS/Envisat. Atmospheric Chemistry and Physics, 2016, 16, 6701-6719.	4.9	10
144	Assessing stratospheric transport in the CMAM30 simulations using ACE-FTS measurements. Atmospheric Chemistry and Physics, 2018, 18, 6801-6828.	4.9	10

#	Article	IF	CITATIONS
145	Differences in ozone retrieval in MIPAS channels A and AB: a spectroscopic issue. Atmospheric Measurement Techniques, 2018, 11, 4707-4723.	3.1	10
146	Simulating age of air and the distribution of SF ₆ in the stratosphere with the SILAM model. Atmospheric Chemistry and Physics, 2020, 20, 5837-5859.	4.9	10
147	Do vibrationally excited OH molecules affect middle and upper atmospheric chemistry?. Atmospheric Chemistry and Physics, 2010, 10, 9953-9964.	4.9	9
148	Assessment of the interannual variability and influence of the QBO and upwelling on tracer–tracer distributions of N ₂ O and O ₃ in the tropical lower stratosphere. Atmospheric Chemistry and Physics, 2013, 13, 3619-3641.	4.9	9
149	Global distributions of CO ₂ volume mixing ratio in the middle and upper atmosphere from daytime MIPAS high-resolution spectra. Atmospheric Measurement Techniques, 2016, 9, 6081-6100.	3.1	9
150	Non-LTE state distribution of nitric oxide and its impact on the retrieval of the stratospheric daytime no profile from MIPAS limb sounding instruments. Advances in Space Research, 2000, 26, 947-950.	2.6	8
151	Evidence for CH47.6 μm non-local thermodynamic equilibrium emission in the mesosphere. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	8
152	Interannual variability of the boreal summer tropical UTLS in observations and CCMVal-2 simulations. Atmospheric Chemistry and Physics, 2016, 16, 8695-8714.	4.9	8
153	Retrieval of tropospheric versus stratospheric partitioning of HCl from ground-based MIPAS FTIR spectra. Journal of Quantitative Spectroscopy and Radiative Transfer, 1995, 54, 899-912.	2.3	7
154	<title>Intercomparison of the KOPRA and the RFM radiative transfer codes</title> ., 1999, 3867, 348.		7
155	Early IMK/IAA MIPAS/ENVISAT results. , 2003, 4882, 184.		7
156	Validation of longâ€ŧerm measurements of water vapor from the midstratosphere to the mesosphere at two Network for the Detection of Atmospheric Composition Change sites. Journal of Geophysical Research D: Atmospheres, 2013, 118, 934-942.	3.3	7
157	On the improved stability of the version 7 MIPAS ozone record. Atmospheric Measurement Techniques, 2018, 11, 4693-4705.	3.1	7
158	Sequestration of HNO3in polar stratospheric clouds and chlorine activation as monitored by ground-based Fourier transform infrared solar absorption measurements. Journal of Geophysical Research, 1998, 103, 22181-22200.	3.3	6
159	Clobal stratospheric hydrogen peroxide distribution from MIPAS-Envisat full resolution spectra compared to KASIMA model results. Atmospheric Chemistry and Physics, 2012, 12, 4923-4933.	4.9	6
160	Comparisons of MIPAS-observed temperature profiles with other satellite measurements. , 2004, , .		5
161	Evidence for N2Oν34.5μm non-local thermodynamic equilibrium emission in the atmosphere. Geophysical Research Letters, 2007, 34, .	4.0	5
162	SCIAMACHY lunar occultation water vapor measurements: retrieval and validation results. Atmospheric Measurement Techniques, 2012, 5, 2499-2513.	3.1	5

#	Article	IF	CITATIONS
163	Retrievals of heavy ozone with MIPAS. Atmospheric Measurement Techniques, 2016, 9, 6069-6079.	3.1	5
164	The MIPAS/Envisat climatology (2002–2012) of polar stratospheric cloud volume density profiles. Atmospheric Measurement Techniques, 2018, 11, 5901-5923.	3.1	5
165	Comparison of ground-based and satellite measurements of water vapour vertical profiles over Ellesmere Island, Nunavut. Atmospheric Measurement Techniques, 2019, 12, 4039-4063.	3.1	4
166	Methane and nitrous oxide from ground-based FTIR at Addis Ababa: observations, error analysis, and comparison with satellite data. Atmospheric Measurement Techniques, 2020, 13, 4079-4096.	3.1	4
167	The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity. Atmospheric Measurement Techniques, 2022, 15, 3377-3400.	3.1	4
168	Comparison of GPS/SAC-C and MIPAS/ENVISAT Temperature Profiles and Its Possible Implementation for EOS MLS Observations. , 2005, , 573-578.		3
169	Analysis of averaged broadband residuals between MIPAS-Envisat spectra and line-by-line calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 1330-1339.	2.3	3
170	Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes. AIP Conference Proceedings, 2013, , .	0.4	3
171	Merged ozone profiles from four MIPAS processors. Atmospheric Measurement Techniques, 2017, 10, 1511-1518.	3.1	3
172	Retrieval of water vapor in the upper troposphere/lower stratosphere from MIPAS/Envisat limb emission spectra. , 1999, 3756, 536.		2
173	Non-LTE studies for the analysis of MIPAS/ENVISAT data. , 2002, , .		2
174	New non-LTE retrieval method for atmospheric parameters from MIPAS/ENVISAT emission spectra at 5.3 l̂¼ m. , 2002, 4539, 396.		2
175	The Influence of Energetic Particles on the Chemistry of the Middle Atmosphere. Springer Atmospheric Sciences, 2013, , 247-273.	0.3	2
176	MIPAS IMK/IAA carbon tetrachloride (CCl ₄) retrieval and first comparison with other instruments. Atmospheric Measurement Techniques, 2017, 10, 2727-2743.	3.1	2
177	Influences of the Indian Summer Monsoon on Water Vapor and Ozone Concentrations in the UTLS as Simulated by Chemistry–Climate Models. Journal of Climate, 2010, 23, 3525-3544.	3.2	2
178	The impact of sulfur hexafluoride (SF ₆) sinks on age of air climatologies and trends. Atmospheric Chemistry and Physics, 2022, 22, 1175-1193.	4.9	2
179	Variations of tropospheric HCl amounts over northern Sweden. Geophysical Research Letters, 1997, 24, 849-852.	4.0	1

180 Validation of MIPAS/ENVISAT level-1B data products. , 2003, , .

#	Article	IF	CITATIONS
181	Comparisons of MIPAS/ENVISAT and GPS-RO/CHAMP Temperatures. , 2005, , 567-572.		1
182	The SPARC water vapour assessmentÂll: profile-to-profile and climatological comparisons of stratospheric <i>l´</i> D(H ₂ O) observations from satellite. Atmospheric Chemistry and Physics, 2019, 19, 2497-2526.	4.9	1
183	A reassessment of the discrepancies in the annual variation of <i>δ</i> D-H ₂ O in the tropical lower stratosphere between the MIPAS and ACE-FTS satellite data sets. Atmospheric Measurement Techniques, 2020, 13, 287-308.	3.1	1
184	Retrievability of Upper Tropospheric Species and Parameters from MIPAS/ENVISAT Data. , 2004, , 167-180.		1
185	Optimized forward and retrieval model for MIPAS near-real-time data processing. Proceedings of SPIE, 1998, , .	0.8	1
186	The Impact of Energetic Particle Precipitation on the Earths Atmosphere. Thirty Years of Astronomical Discovery With UKIRT, 2010, , 181-189.	0.3	1
187	The Michelson Interferometer for Passive Atmospheric Sounding global climatology of BrONO ₂ 2002–2012: a test for stratospheric bromine chemistry. Atmospheric Chemistry and Physics, 2021, 21, 18433-18464.	4.9	1
188	MIPAS used as a nonlocal thermodynamic equilibrium sounder for NO 5.3 μm band. Journal of Geophysical Research, 1997, 102, 30003-30015.	3.3	0
189	Feasibility of measurements of water vapor and ice clouds in the tropical UT/LS region with MIPAS/Envisat. Advances in Space Research, 2004, 34, 815-819.	2.6	Ο
190	Corrigendum to "The Australian bushfires of February 2009: MIPAS observations and GEM-AQ model results" published in Atmos. Chem. Phys., 13, 1637–1658, 2013. Atmospheric Chemistry and Physics, 2013, 13, 4373-4373.	4.9	0
191	The middle atmospheric meridional circulation for 2002–2012 derived from MIPAS observations. Atmospheric Chemistry and Physics, 2021, 21, 8823-8843.	4.9	0