
Thomas Pietschmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/856179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The HCV Life Cycle: In vitro Tissue Culture Systems and Therapeutic Targets. Digestive Diseases, 2014, 32, 525-537.	1.9	3,128
2	Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature Medicine, 2005, 11, 791-796.	30.7	2,561
3	Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7408-7413.	7.1	651
4	EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nature Medicine, 2011, 17, 589-595.	30.7	631
5	Characterization of the Early Steps of Hepatitis C Virus Infection by Using Luciferase Reporter Viruses. Journal of Virology, 2006, 80, 5308-5320.	3.4	363
6	A Lymphotoxin-Driven Pathway to Hepatocellular Carcinoma. Cancer Cell, 2009, 16, 295-308.	16.8	345
7	Hepatitis C Virus p7 Protein Is Crucial for Assembly and Release of Infectious Virions. PLoS Pathogens, 2007, 3, e103.	4.7	290
8	The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology, 2011, 54, 1947-1955.	7.3	255
9	Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14416-14421.	7.1	244
10	Novel Insights into Hepatitis C Virus Replication and Persistence. Advances in Virus Research, 2004, 63, 71-180.	2.1	243
11	Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology, 2007, 46, 1722-1731.	7.3	222
12	The Level of CD81 Cell Surface Expression Is a Key Determinant for Productive Entry of Hepatitis C Virus into Host Cells. Journal of Virology, 2007, 81, 588-598.	3.4	201
13	Hepatitis C Virus Hypervariable Region 1 Modulates Receptor Interactions, Conceals the CD81 Binding Site, and Protects Conserved Neutralizing Epitopes. Journal of Virology, 2010, 84, 5751-5763.	3.4	201
14	Analysis of Hepatitis C Virus Superinfection Exclusion by Using Novel Fluorochrome Gene-Tagged Viral Genomes. Journal of Virology, 2007, 81, 4591-4603.	3.4	198
15	High Density Lipoprotein Inhibits Hepatitis C Virus-neutralizing Antibodies by Stimulating Cell Entry via Activation of the Scavenger Receptor BI. Journal of Biological Chemistry, 2006, 281, 18285-18295.	3.4	186
16	Interferon lambda 4 signals via the IFNλ receptor to regulate antiviral activity against HCV and coronaviruses. EMBO Journal, 2013, 32, 3055-3065.	7.8	177
17	CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells. Journal of General Virology, 2009, 90, 48-58.	2.9	162
18	Foamy Virus Capsids Require the Cognate Envelope Protein for Particle Export. Journal of Virology, 1999–73–2613-2621	3.4	152

#	Article	IF	CITATIONS
19	Virucidal Activity of World Health Organization–Recommended Formulations Against Enveloped Viruses, Including Zika, Ebola, and Emerging Coronaviruses. Journal of Infectious Diseases, 2017, 215, 902-906.	4.0	151
20	Characterization of the hepatitis C virus E2 epitope defined by the broadly neutralizing monoclonal antibody AP33. Hepatology, 2006, 43, 592-601.	7.3	150
21	Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells. Gut, 2014, 63, 1137-1149.	12.1	148
22	Structural and Functional Characterization of Nonstructural Protein 2 for Its Role in Hepatitis C Virus Assembly. Journal of Biological Chemistry, 2008, 283, 28546-28562.	3.4	135
23	Efficient <i>trans</i> -Encapsidation of Hepatitis C Virus RNAs into Infectious Virus-Like Particles. Journal of Virology, 2008, 82, 7034-7046.	3.4	131
24	Antiviral effects of amantadine and iminosugar derivatives against hepatitis C virus. Hepatology, 2007, 46, 330-338.	7.3	127
25	Critical challenges and emerging opportunities in hepatitis C virus research in an era of potent antiviral therapy: Considerations for scientists and funding agencies. Virus Research, 2018, 248, 53-62.	2.2	124
26	A condensate-hardening drug blocks RSV replication in vivo. Nature, 2021, 595, 596-599.	27.8	121
27	NMR Structure and Ion Channel Activity of the p7 Protein from Hepatitis C Virus. Journal of Biological Chemistry, 2010, 285, 31446-31461.	3.4	119
28	Production of Infectious Genotype 1b Virus Particles in Cell Culture and Impairment by Replication Enhancing Mutations. PLoS Pathogens, 2009, 5, e1000475.	4.7	116
29	Clinical course of infection and viral tissue tropism of hepatitis C virus–like nonprimate hepaciviruses in horses. Hepatology, 2015, 61, 447-459.	7.3	116
30	A Plant-Derived Flavonoid Inhibits Entry of All HCV Genotypes Into Human Hepatocytes. Gastroenterology, 2012, 143, 213-222.e5.	1.3	111
31	MAP-Kinase Regulated Cytosolic Phospholipase A2 Activity Is Essential for Production of Infectious Hepatitis C Virus Particles. PLoS Pathogens, 2012, 8, e1002829.	4.7	110
32	Adaptation of Hepatitis C Virus to Mouse CD81 Permits Infection of Mouse Cells in the Absence of Human Entry Factors. PLoS Pathogens, 2010, 6, e1000978.	4.7	109
33	Hepatitis C Virus p7 is Critical for Capsid Assembly and Envelopment. PLoS Pathogens, 2013, 9, e1003355.	4.7	102
34	Inactivation and Survival of Hepatitis C Virus on Inanimate Surfaces. Journal of Infectious Diseases, 2011, 204, 1830-1838.	4.0	90
35	Natural reservoirs for homologs of hepatitis C virus. Emerging Microbes and Infections, 2014, 3, 1-9.	6.5	88
36	Apolipoprotein E Codetermines Tissue Tropism of Hepatitis C Virus and Is Crucial for Viral Cell-to-Cell Transmission by Contributing to a Postenvelopment Step of Assembly. Journal of Virology, 2014, 88, 1433-1446.	3.4	88

#	Article	IF	CITATIONS
37	Low pH-dependent Hepatitis C Virus Membrane Fusion Depends on E2 Integrity, Target Lipid Composition, and Density of Virus Particles. Journal of Biological Chemistry, 2009, 284, 17657-17667.	3.4	79
38	Interferonâ€inducible cholesterolâ€25â€hydroxylase restricts hepatitis C virus replication through blockage of membranous web formation. Hepatology, 2015, 62, 702-714.	7.3	78
39	Antiviral Activities of Different Interferon Types and Subtypes against Hepatitis E Virus Replication. Antimicrobial Agents and Chemotherapy, 2016, 60, 2132-2139.	3.2	75
40	How Stable Is the Hepatitis C Virus (HCV)? Environmental Stability of HCV and Its Susceptibility to Chemical Biocides. Journal of Infectious Diseases, 2010, 201, 1859-1866.	4.0	72
41	Cell Culture Systems for Hepatitis C Virus. Current Topics in Microbiology and Immunology, 2013, 369, 17-48.	1.1	72
42	A molecular tweezer antagonizes seminal amyloids and HIV infection. ELife, 2015, 4, .	6.0	71
43	Glucocorticosteroids Increase Cell Entry by Hepatitis C Virus. Gastroenterology, 2010, 138, 1875-1884.	1.3	68
44	Mutations That Alter Use of Hepatitis C Virus Cell Entry Factors Mediate Escape From Neutralizing Antibodies. Gastroenterology, 2012, 143, 223-233.e9.	1.3	66
45	The postbinding activity of scavenger receptor class B type I mediates initiation of hepatitis C virus infection and viral dissemination. Hepatology, 2013, 57, 492-504.	7.3	66
46	Characterization of Determinants Important for Hepatitis C Virus p7 Function in Morphogenesis by Using trans -Complementation. Journal of Virology, 2009, 83, 11682-11693.	3.4	65
47	Flunarizine prevents hepatitis C virus membrane fusion in a genotypeâ€dependent manner by targeting the potential fusion peptide within E1. Hepatology, 2016, 63, 49-62.	7.3	64
48	Transmission of Hepatitis C Virus Among People Who Inject Drugs: Viral Stability and Association With Drug Preparation Equipment. Journal of Infectious Diseases, 2013, 207, 281-287.	4.0	57
49	Incorporation of Hepatitis C Virus E1 and E2 Glycoproteins: The Keystones on a Peculiar Virion. Viruses, 2014, 6, 1149-1187.	3.3	56
50	Two pathogen reduction technologies—methylene blue plus light and shortwave ultraviolet light—effectively inactivate hepatitis C virus in blood products. Transfusion, 2013, 53, 1010-1018.	1.6	54
51	Isolate-dependent use of claudins for cell entry by hepatitis C virus. Hepatology, 2014, 59, 24-34.	7.3	54
52	Protein Interactions during the Flavivirus and Hepacivirus Life Cycle. Molecular and Cellular Proteomics, 2017, 16, S75-S91.	3.8	53
53	Maturation of secreted HCV particles by incorporation of secreted ApoE protects from antibodies by enhancing infectivity. Journal of Hepatology, 2017, 67, 480-489.	3.7	51
54	Mouse-Specific Residues of Claudin-1 Limit Hepatitis C Virus Genotype 2a Infection in a Human Hepatocyte Cell Line. Journal of Virology, 2010, 84, 964-975.	3.4	50

#	Article	IF	CITATIONS
55	Successful anti-scavenger receptor class B type I (SR-BI) monoclonal antibody therapy in humanized mice after challenge with HCV variants with <i>in vitro</i> resistance to SR-BI-targeting agents. Hepatology, 2014, 60, 1508-1518.	7.3	50
56	Quantitative Proteomics Identifies Serum Response Factor Binding Protein 1 as a Host Factor for Hepatitis C Virus Entry. Cell Reports, 2015, 12, 864-878.	6.4	50
57	Inactivation of Hepatitis C Virus Infectivity by Human Breast Milk. Journal of Infectious Diseases, 2013, 208, 1943-1952.	4.0	47
58	Entry and replication of recombinant hepatitis C viruses in cell culture. Methods, 2013, 59, 233-248.	3.8	46
59	Mechanisms of Methods for Hepatitis C Virus Inactivation. Applied and Environmental Microbiology, 2015, 81, 1616-1621.	3.1	46
60	cGAS-Mediated Innate Immunity Spreads Intercellularly through HIV-1 Env-Induced Membrane Fusion Sites. Cell Host and Microbe, 2016, 20, 443-457.	11.0	46
61	Hepatitis C virus enters liver cells using the CD81 receptor complex proteins calpain-5 and CBLB. PLoS Pathogens, 2018, 14, e1007111.	4.7	46
62	Hepatitis C Virus P7—A Viroporin Crucial for Virus Assembly and an Emerging Target for Antiviral Therapy. Viruses, 2010, 2, 2078-2095.	3.3	44
63	Subcellular Localization and Function of an Epitope-Tagged p7 Viroporin in Hepatitis C Virus-Producing Cells. Journal of Virology, 2013, 87, 1664-1678.	3.4	42
64	Role of Hypervariable Region 1 for the Interplay of Hepatitis C Virus with Entry Factors and Lipoproteins. Journal of Virology, 2014, 88, 12644-12655.	3.4	42
65	Genetic Diversity Underlying the Envelope Glycoproteins of Hepatitis C Virus: Structural and Functional Consequences and the Implications for Vaccine Design. Viruses, 2015, 7, 3995-4046.	3.3	42
66	Immune protection against reinfection with nonprimate hepacivirus. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2430-E2439.	7.1	42
67	Hepatitis C virus complete life cycle screen for identification of small molecules with pro- or antiviral activity. Antiviral Research, 2011, 89, 136-148.	4.1	41
68	HCV Pit Stop at the Lipid Droplet: Refuel Lipids and Put on a Lipoprotein Coat before Exit. Cells, 2019, 8, 233.	4.1	41
69	Impact of Intra- and Interspecies Variation of Occludin on Its Function as Coreceptor for Authentic Hepatitis C Virus Particles. Journal of Virology, 2011, 85, 7613-7621.	3.4	40
70	Cell entry, efficient RNA replication, and production of infectious hepatitis C virus progeny in mouse liver-derived cells. Hepatology, 2014, 59, 78-88.	7.3	40
71	Hepatitis E virus replication and interferon responses in human placental cells. Hepatology Communications, 2018, 2, 173-187.	4.3	40
72	Hepatitis C Virus Entry: Protein Interactions and Fusion Determinants Governing Productive Hepatocyte Invasion. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a036830.	6.2	40

#	Article	IF	CITATIONS
73	C19orf66 is an interferon-induced inhibitor of HCV replication that restricts formation of the viral replication organelle. Journal of Hepatology, 2020, 73, 549-558.	3.7	35
74	Virucidal activity of 2 alcohol-based formulations proposed as hand rubs byÂthe World Health Organization. American Journal of Infection Control, 2010, 38, 66-68.	2.3	34
75	Hepatitis C Virus. Trends in Microbiology, 2019, 27, 379-380.	7.7	33
76	Differential interferon-α subtype induced immune signatures are associated with suppression of SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	33
77	Conformational Flexibility in the Immunoglobulin-Like Domain of the Hepatitis C Virus Glycoprotein E2. MBio, 2017, 8, .	4.1	31
78	Hepatitis C Virus Replication in Mouse Cells Is Restricted by IFN-Dependent and -Independent Mechanisms. Gastroenterology, 2013, 145, 1414-1423.e1.	1.3	30
79	Labyrinthopeptins Exert Broad-Spectrum Antiviral Activity through Lipid-Binding-Mediated Virolysis. Journal of Virology, 2020, 94, .	3.4	30
80	Labyrinthopeptins as virolytic inhibitors of respiratory syncytial virus cell entry. Antiviral Research, 2020, 177, 104774.	4.1	30
81	Several Human Liver Cell Expressed Apolipoproteins Complement HCV Virus Production with Varying Efficacy Conferring Differential Specific Infectivity to Released Viruses. PLoS ONE, 2015, 10, e0134529.	2.5	30
82	Soraphen A: A broad-spectrum antiviral natural product with potent anti-hepatitis C virus activity. Journal of Hepatology, 2015, 63, 813-821.	3.7	28
83	Pentagalloylglucose, a highly bioavailable polyphenolic compound present in Cortex moutan, efficiently blocks hepatitis C virus entry. Antiviral Research, 2017, 147, 19-28.	4.1	28
84	Hepacivirus NS3/4A Proteases Interfere with MAVS Signaling in both Their Cognate Animal Hosts and Humans: Implications for Zoonotic Transmission. Journal of Virology, 2016, 90, 10670-10681.	3.4	27
85	ABHD5/CGI-58, the Chanarin-Dorfman Syndrome Protein, Mobilises Lipid Stores for Hepatitis C Virus Production. PLoS Pathogens, 2016, 12, e1005568.	4.7	26
86	The ATGL lipase cooperates with ABHD5 to mobilize lipids for hepatitis C virus assembly. PLoS Pathogens, 2020, 16, e1008554.	4.7	25
87	Decoding protein networks during virus entry by quantitative proteomics. Virus Research, 2016, 218, 25-39.	2.2	24
88	Completion of Hepatitis C Virus Replication Cycle in Heterokaryons Excludes Dominant Restrictions in Human Non-liver and Mouse Liver Cell Lines. PLoS Pathogens, 2011, 7, e1002029.	4.7	23
89	Control of Hepatitis C Virus Replication in Mouse Liver-Derived Cells by MAVS-Dependent Production of Type I and Type III Interferons. Journal of Virology, 2015, 89, 3833-3845.	3.4	23
90	Liver-expressed <i>Cd302</i> and <i>Cr1l</i> limit hepatitis C virus cross-species transmission to mice. Science Advances, 2020, 6, .	10.3	23

THOMAS PIETSCHMANN

#	Article	IF	CITATIONS
91	Bile Acids Specifically Increase Hepatitis C Virus RNA-Replication. PLoS ONE, 2012, 7, e36029.	2.5	23
92	Identification of a Human Respiratory Syncytial Virus Cell Entry Inhibitor by Using a Novel Lentiviral Pseudotype System. Journal of Virology, 2016, 90, 3065-3073.	3.4	22
93	Escape from a Dominant HLA-B*15-Restricted CD8 ⁺ T Cell Response against Hepatitis C Virus Requires Compensatory Mutations outside the Epitope. Journal of Virology, 2012, 86, 991-1000.	3.4	21
94	Targeting a host-cell entry factor barricades antiviral-resistant HCV variants from on-therapy breakthrough in human-liver mice. Gut, 2016, 65, 2029-2034.	12.1	21
95	Hepatitis C Virus Strain-Dependent Usage of Apolipoprotein E Modulates Assembly Efficiency and Specific Infectivity of Secreted Virions. Journal of Virology, 2017, 91, .	3.4	21
96	Analysis of antibodies from HCV elite neutralizers identifies genetic determinants of broad neutralization. Immunity, 2022, 55, 341-354.e7.	14.3	21
97	Functional and immunogenic characterization of diverse HCV glycoprotein E2 variants. Journal of Hepatology, 2019, 70, 593-602.	3.7	20
98	Total Synthesis of a Noricumazoleâ€A Library and Evaluation of HCV Inhibition. Chemistry - A European Journal, 2012, 18, 9083-9090.	3.3	19
99	Clinically Approved Ion Channel Inhibitors Close Gates for Hepatitis C Virus and Open Doors for Drug Repurposing in Infectious Viral Diseases. Journal of Virology, 2017, 91, .	3.4	19
100	Assessment of cross-species transmission of hepatitis C virus-related non-primate hepacivirus in a population of humans at high risk of exposure. Journal of General Virology, 2015, 96, 2636-2642.	2.9	19
101	Characterization of Hepatitis C Virus Intra- and Intergenotypic Chimeras Reveals a Role of the Glycoproteins in Virus Envelopment. Journal of Virology, 2013, 87, 13297-13306.	3.4	18
102	Synthesis of 4′/5′-Spirocyclopropanated Uridine and <scp>d</scp> -Xylouridine Derivatives and Their Activity against the Human Respiratory Syncytial Virus. Organic Letters, 2019, 21, 6966-6971.	4.6	18
103	Efficient acute and chronic infection of stem cell-derived hepatocytes by hepatitis C virus. Gut, 2020, 69, 1659-1666.	12.1	18
104	Characterization of the inhibition of hepatitis C virus entry by <i>In vitro</i> -generated and patient-derived oxidized low-density lipoprotein. Hepatology, 2013, 57, 1716-1724.	7.3	16
105	Distinct Escape Pathway by Hepatitis C Virus Genotype 1a from a Dominant CD8 ⁺ T Cell Response by Selection of Altered Epitope Processing. Journal of Virology, 2016, 90, 33-42.	3.4	16
106	A central hydrophobic E1 region controls the pH range of hepatitis C virus membrane fusion and susceptibility to fusion inhibitors. Journal of Hepatology, 2019, 70, 1082-1092.	3.7	15
107	Hepatitis C reference viruses highlight potent antibody responses and diverse viral functional interactions with neutralising antibodies. Gut, 2021, 70, 1734-1745.	12.1	15
108	Expanding the Host Range of Hepatitis C Virus through Viral Adaptation. MBio, 2016, 7, .	4.1	13

THOMAS PIETSCHMANN

#	Article	IF	CITATIONS
109	CD81 Receptor Regions outside the Large Extracellular Loop Determine Hepatitis C Virus Entry into Hepatoma Cells. Viruses, 2018, 10, 207.	3.3	13
110	Filovirus Antiviral Activity of Cationic Amphiphilic Drugs Is Associated with Lipophilicity and Ability To Induce Phospholipidosis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	13
111	Controlled Functional Zonation of Hepatocytes <i>In Vitro</i> by Engineering of Wnt Signaling. ACS Synthetic Biology, 2020, 9, 1638-1649.	3.8	13
112	Initial Hepatitis C Virus Infection of Adult Hepatocytes Triggers a Temporally Structured Transcriptional Program Containing Diverse Pro- and Antiviral Elements. Journal of Virology, 2021, 95,	3.4	13
113	Development of a high-throughput pyrosequencing assay for monitoring temporal evolution and resistance associated variant emergence in the Hepatitis C virus protease coding-region. Antiviral Research, 2014, 110, 52-59.	4.1	12
114	Physicochemical Properties Govern the Activity of Potent Antiviral Flavones. ACS Omega, 2019, 4, 4871-4887.	3.5	11
115	Characterization of RNA Sensing Pathways in Hepatoma Cell Lines and Primary Human Hepatocytes. Cells, 2021, 10, 3019.	4.1	10
116	Sandacrabins – Structurally Unique Antiviral RNA Polymerase Inhibitors from a Rare Myxobacterium**. Chemistry - A European Journal, 2022, 28, e202104484.	3.3	10
117	Intra-host analysis of hepaciviral glycoprotein evolution reveals signatures associated with viral persistence and clearance. Virus Evolution, 2022, 8, veac007.	4.9	10
118	Efficient Virus Assembly, but Not Infectivity, Determines the Magnitude of Hepatitis C Virus-Induced Interferon Alpha Responses of Plasmacytoid Dendritic Cells. Journal of Virology, 2015, 89, 3200-3208.	3.4	9
119	The Small-Compound Inhibitor K22 Displays Broad Antiviral Activity against Different Members of the Family Flaviviridae and Offers Potential as a Panviral Inhibitor. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	9
120	Hepatitis C Virus Hypervariable Region 1 Variants Presented on Hepatitis B Virus Capsid-Like Particles Induce Cross-Neutralizing Antibodies. PLoS ONE, 2014, 9, e102235.	2.5	8
121	Protecting-Group-Mediated Diastereoselective Synthesis of C4′-Methylated Uridine Analogs and Their Activity against the Human Respiratory Syncytial Virus. Journal of Organic Chemistry, 2020, 85, 4267-4278.	3.2	8
122	Full-Length Infectious HCV Chimeras. Methods in Molecular Biology, 2009, 510, 347-359.	0.9	8
123	Opportunities and Risks of Host-targeting Antiviral Strategies for Hepatitis C. Current Hepatitis Reports, 2013, 12, 200-213.	0.3	7
124	Incorporation of primary patient-derived glycoproteins into authentic infectious hepatitis C virus particles. Hepatology, 2014, 60, 508-520.	7.3	7
125	Hepatitis C virus plays hide and seek with neutralizing antibodies. Hepatology, 2016, 64, 1840-1842.	7.3	7
126	Apolipoprotein E polymorphisms and their protective effect on hepatitis E virus replication. Hepatology, 2016, 64, 2274-2276.	7.3	7

#	Article	IF	CITATIONS
127	Characterization of the Filovirus-Resistant Cell Line SH-SY5Y Reveals Redundant Role of Cell Surface Entry Factors. Viruses, 2019, 11, 275.	3.3	7
128	OCIAD1 is a host mitochondrial substrate of the hepatitis C virus NS3-4A protease. PLoS ONE, 2020, 15, e0236447.	2.5	7
129	Single-nucleotide variants in human CD81 influence hepatitis C virus infection of hepatoma cells. Medical Microbiology and Immunology, 2020, 209, 499-514.	4.8	6
130	IRIS: Infection with RespIratory Syncytial Virus in infants—a prospective observational cohort study. BMC Pulmonary Medicine, 2022, 22, 88.	2.0	6
131	Tracking HCV protease population diversity during transmission and susceptibility of founder populations to antiviral therapy. Antiviral Research, 2017, 139, 129-137.	4.1	5
132	Identification of Keratin 23 as a Hepatitis C Virus-Induced Host Factor in the Human Liver. Cells, 2019, 8, 610.	4.1	5
133	Ion Channel Function and Cross-Species Determinants in Viral Assembly of Nonprimate Hepacivirus p7. Journal of Virology, 2016, 90, 5075-5089.	3.4	4
134	Synthetic Polymer with a Structure-Driven Hepatic Deposition and Curative Pharmacological Activity in Hepatic Cells. ACS Macro Letters, 2017, 6, 935-940.	4.8	4
135	Molecular characteristics and successful management of a respiratory syncytial virus outbreak among pediatric patients with hemato-oncological disease. Antimicrobial Resistance and Infection Control, 2018, 7, 21.	4.1	4
136	Hepatitis C Virus Stimulates Murine CD8α-Like Dendritic Cells to Produce Type I Interferon in a TRIF-Dependent Manner. PLoS Pathogens, 2016, 12, e1005736.	4.7	4
137	The Human Liver-Expressed Lectin CD302 Restricts Hepatitis C Virus Infection. Journal of Virology, 2022, 96, e0199521.	3.4	4
138	Cohort Profile: The LoewenKIDS Study – life-course perspective on infections, the microbiome and the development of the immune system in early childhood. International Journal of Epidemiology, 2019, 48, 1042-1043h.	1.9	3
139	Target capture sequencing reveals a monoclonal outbreak of respiratory syncytial virus B infections among adult hematologic patients. Antimicrobial Resistance and Infection Control, 2022, 11, .	4.1	3
140	Hepatitis C virus NS5B polymerase primes innate immune signaling. Hepatology, 2013, 57, 1275-1277.	7.3	2
141	In sero veritas: what serum markers teach us about HCV infection of primary human hepatocytes. Gut, 2014, 63, 1375-1377.	12.1	2
142	Analysis of Serine Codon Conservation Reveals Diverse Phenotypic Constraints on Hepatitis C Virus Glycoprotein Evolution. Journal of Virology, 2014, 88, 667-678.	3.4	2
143	A Lymphotoxin-Driven Pathway to Hepatocellular Carcinoma. Cancer Cell, 2009, 16, 447.	16.8	1
144	Cell culture-derived HCV cannot infect synovial fibroblasts. Scientific Reports, 2015, 5, 18043.	3.3	1

#	Article	IF	CITATIONS
145	Magnesium Complexes of Ladanein: A Beneficial Strategy for Stabilizing Polyphenolic Antivirals. European Journal of Inorganic Chemistry, 2021, 2021, 2764-2772.	2.0	1
146	A circuit of paracrine signals between liver sinusoid endothelial cells and hepatocytes regulates hepatitis C virus replication. Hepatology, 2014, 59, 363-365.	7.3	0