List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8561758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global sensitivity and uncertainty analysis of a microalgae model for wastewater treatment. Science of the Total Environment, 2022, 806, 150504.	3.9	7
2	Comprehensive assessment of the microalgae-nitrifying bacteria competition in microalgae-based wastewater treatment systems: Relevant factors, evaluation methods and control strategies. Algal Research, 2022, 61, 102563.	2.4	17
3	Assessing and modeling nitrite inhibition in microalgae-bacteria consortia for wastewater treatment by means of photo-respirometric and chlorophyll fluorescence techniques. Science of the Total Environment, 2022, 808, 152128.	3.9	13
4	Advanced HRT-Controller Aimed at Optimising Nitrogen Recovery by Microalgae: Application in an Outdoor Flat-Panel Membrane Photobioreactor. ChemEngineering, 2022, 6, 24.	1.0	1
5	A semi-industrial scale AnMBR for municipal wastewater treatment at ambient temperature: performance of the biological process. Water Research, 2022, 215, 118249.	5.3	17
6	Anaerobic membrane bioreactors for resource recovery from municipal wastewater: a comprehensive review of recent advances. Environmental Science: Water Research and Technology, 2021, 7, 1944-1965.	1.2	7
7	Outdoor microalgaeâ€based urban wastewater treatment: Recent advances, applications, and future perspectives. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1518.	2.8	14
8	Widening the applicability of AnMBR for urban wastewater treatment through PDMS membranes for dissolved methane capture: Effect of temperature and hydrodynamics. Journal of Environmental Management, 2021, 287, 112344.	3.8	10
9	Kinetic modeling of autotrophic microalgae mainline processes for sewage treatment in phosphorus-replete and -deplete culture conditions. Science of the Total Environment, 2021, 797, 149165.	3.9	8
10	Economic analysis of the scale-up and implantation of a hollow fibre membrane contactor plant for nitrogen recovery in a full-scale wastewater treatment plant. Separation and Purification Technology, 2021, 275, 119128.	3.9	16
11	Selecting the most suitable microalgae species to treat the effluent from an anaerobic membrane bioreactor. Environmental Technology (United Kingdom), 2020, 41, 267-276.	1.2	15
12	Unveiling microbial structures during raw microalgae digestion and co-digestion with primary sludge to produce biogas using semi-continuous AnMBR systems. Science of the Total Environment, 2020, 699, 134365.	3.9	21
13	Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale. Bioresource Technology, 2020, 301, 122672.	4.8	28
14	New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy. Bioresource Technology, 2020, 300, 122673.	4.8	127
15	Co-digestion of harvested microalgae and primary sludge in a mesophilic anaerobic membrane bioreactor (AnMBR): Methane potential and microbial diversity. Bioresource Technology, 2020, 298, 122521.	4.8	29
16	Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates. Bioresource Technology, 2020, 314, 123763.	4.8	32
17	Anaerobic membrane bioreactor (AnMBR) scale-up from laboratory to pilot-scale for microalgae and primary sludge co-digestion: Biological and filtration assessment. Bioresource Technology, 2020, 316, 123930.	4.8	14
18	On-line monitoring of photosynthetic activity based on pH data to assess microalgae cultivation. Journal of Environmental Management, 2020, 276, 111343.	3.8	16

#	Article	IF	CITATIONS
19	Production of microalgal external organic matter in a <i>Chlorella</i> -dominated culture: influence of temperature and stress factors. Environmental Science: Water Research and Technology, 2020, 6, 1828-1841.	1.2	11
20	AnMBR, reclaimed water and fertigation: Two case studies in Italy and Spain to assess economic and technological feasibility and CO2 emissions within the EU Innovation Deal initiative. Journal of Cleaner Production, 2020, 270, 122398.	4.6	25
21	Energy and environmental impact of an anaerobic membrane bioreactor (AnMBR) demonstration plant treating urban wastewater. , 2020, , 289-310.		7
22	A mathematical approach to predict the solids concentration in anaerobic membrane bioreactos (AnMBR): Evaluation of the volatile solids solubilization. Journal of Environmental Management, 2020, 271, 110983.	3.8	1
23	Insights into the biological process performance and microbial diversity during thermophilic microalgae co-digestion in an anaerobic membrane bioreactor (AnMBR). Algal Research, 2020, 50, 101981.	2.4	11
24	An integral approach to sludge handling in a WWTP operated for EBPR aiming phosphorus recovery: Simulation of alternatives, LCA and LCC analyses. Water Research, 2020, 175, 115647.	5.3	25
25	Plant-wide modelling in wastewater treatment: showcasing experiences using the Biological Nutrient Removal Model. Water Science and Technology, 2020, 81, 1700-1714.	1.2	12
26	Improving membrane photobioreactor performance by reducing light path: operating conditions and key performance indicators. Water Research, 2020, 172, 115518.	5.3	43
27	Nitrite inhibition of microalgae induced by the competition between microalgae and nitrifying bacteria. Water Research, 2020, 172, 115499.	5.3	62
28	Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution. Journal of Environmental Chemical Engineering, 2020, 8, 103880.	3.3	34
29	PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents. Journal of Membrane Science, 2020, 604, 118070.	4.1	37
30	Characterization of activated sludge settling properties with a sludge collapse-acceleration stage. Separation and Purification Technology, 2019, 209, 32-41.	3.9	11
31	Dataset to assess the shadow effect of an outdoor microalgae culture. Data in Brief, 2019, 25, 104143.	0.5	5
32	Acclimatised rumen culture for raw microalgae conversion into biogas: Linking microbial community structure and operational parameters in anaerobic membrane bioreactors (AnMBR). Bioresource Technology, 2019, 290, 121787.	4.8	29
33	Effect of light intensity, light duration and photoperiods in the performance of an outdoor photobioreactor for urban wastewater treatment. Algal Research, 2019, 40, 101511.	2.4	42
34	Thermophilic anaerobic conversion of raw microalgae: Microbial community diversity in high solids retention systems. Algal Research, 2019, 41, 101533.	2.4	13
35	P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources. Science of the Total Environment, 2019, 672, 88-96.	3.9	42
36	Model performance of partial least squares in utilizing the visible spectroscopy data for estimation of algal biomass in a photobioreactor. Environmental Technology and Innovation, 2018, 10, 122-131.	3.0	5

#	Article	IF	CITATIONS
37	Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage. Journal of Cleaner Production, 2018, 178, 665-674.	4.6	45
38	Influence of food waste addition over microbial communities in an Anaerobic Membrane Bioreactor plant treating urban wastewater. Journal of Environmental Management, 2018, 217, 788-796.	3.8	19
39	Wastewater nutrient removal in a mixed microalgae–bacteria culture: effect of light and temperature on the microalgae–bacteria competition. Environmental Technology (United Kingdom), 2018, 39, 503-515.	1.2	64
40	Effect of sludge age on microbial consortia developed in MFCs. Journal of Chemical Technology and Biotechnology, 2018, 93, 1290-1299.	1.6	14
41	Endocrine disrupter compounds removal in wastewater using microalgae: Degradation kinetics assessment. Chemical Engineering Journal, 2018, 334, 313-321.	6.6	42
42	Fate of endocrine disruptor compounds in an anaerobic membrane bioreactor (AnMBR) coupled to an activated sludge reactor. Environmental Science: Water Research and Technology, 2018, 4, 226-233.	1.2	9
43	Calibration Procedure of the Biological Nutrient Removal Model Number 1. Journal of Environmental Engineering, ASCE, 2018, 144, 04017103.	0.7	0
44	Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 2018, 78, 1925-1936.	1.2	53
45	Real-time optimization of the key filtration parameters in an AnMBR: Urban wastewater mono-digestion vs. co-digestion with domestic food waste. Waste Management, 2018, 80, 299-309.	3.7	12
46	A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 2018, 270, 612-626.	4.8	106
47	Effect of long residence time and high temperature over anaerobic biodegradation of Scenedesmus microalgae grown in wastewater. Journal of Environmental Management, 2018, 218, 425-434.	3.8	13
48	Assessment of cross-flow filtration as microalgae harvesting technique prior to anaerobic digestion: Evaluation of biomass integrity and energy demand. Bioresource Technology, 2018, 269, 188-194.	4.8	21
49	Exploring the limits of anaerobic biodegradability of urban wastewater by AnMBR technology. Environmental Science: Water Research and Technology, 2018, 4, 1877-1887.	1.2	23
50	Outdoor flat-panel membrane photobioreactor to treat the effluent of an anaerobic membrane bioreactor. Influence of operating, design, and environmental conditions. Water Science and Technology, 2018, 78, 195-206.	1.2	27
51	A new strategy to maximize organic matter valorization in municipalities: Combination of urban wastewater with kitchen food waste and its treatment with AnMBR technology. Waste Management, 2017, 62, 274-289.	3.7	27
52	Use of rumen microorganisms to boost the anaerobic biodegradability of microalgae. Algal Research, 2017, 24, 309-316.	2.4	17
53	Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants. Journal of Environmental Management, 2017, 196, 340-346.	3.8	28
54	Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions. Algal Research, 2017, 27, 121-130.	2.4	47

#	Article	IF	CITATIONS
55	Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment. Bioresource Technology, 2017, 244, 15-22.	4.8	37
56	Water resource recovery by means of microalgae cultivation in outdoor photobioreactors using the effluent from an anaerobic membrane bioreactor fed with pre-treated sewage. Bioresource Technology, 2016, 218, 447-454.	4.8	51
57	Modeling light and temperature influence on ammonium removal by Scenedesmus sp. under outdoor conditions. Water Science and Technology, 2016, 74, 1964-1970.	1.2	7
58	Economic and environmental sustainability of an AnMBR treating urban wastewater and organic fraction of municipal solid waste. Journal of Environmental Management, 2016, 179, 83-92.	3.8	40
59	Behavior of mixed Chlorophyceae cultures under prolonged dark exposure. Respiration rate modeling. Ecological Engineering, 2016, 91, 265-269.	1.6	8
60	Potential use of the organic fraction of municipal solid waste in anaerobic co-digestion with wastewater in submerged anaerobic membrane technology. Waste Management, 2016, 56, 158-165.	3.7	21
61	Removal of algae from biological cultures: a challenge for electrocoagulation?. Journal of Chemical Technology and Biotechnology, 2016, 91, 82-87.	1.6	15
62	Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment. Journal of Environmental Management, 2016, 166, 45-54.	3.8	69
63	A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology. Environmental Technology (United Kingdom), 2016, 37, 2298-2315.	1.2	18
64	Filtration process cost in submerged anaerobic membrane bioreactors (AnMBRs) for urban wastewater treatment. Separation Science and Technology, 2016, 51, 517-524.	1.3	8
65	Effect of temperature on ammonium removal in Scenedesmus sp Bioresource Technology, 2015, 191, 346-349.	4.8	19
66	Identification and quantification of microbial populations in activated sludge and anaerobic digestion processes. Environmental Technology (United Kingdom), 2015, 36, 45-53.	1.2	14
67	Design methodology for submerged anaerobic membrane bioreactors (AnMBR): A case study. Separation and Purification Technology, 2015, 141, 378-386.	3.9	43
68	Enrichment of AOB and NOB Population by Applying a BABE Reactor in an Activated Sludge Pilot Plant. Water Environment Research, 2015, 87, 369-377.	1.3	9
69	Instrumentation, control, and automation for submerged anaerobic membrane bioreactors. Environmental Technology (United Kingdom), 2015, 36, 1795-1806.	1.2	18
70	Instrumentation and control of anaerobic digestion processes: a review and some research challenges. Reviews in Environmental Science and Biotechnology, 2015, 14, 615-648.	3.9	118
71	Effect of intracellular P content on phosphate removal in Scenedesmus sp. Experimental study and kinetic expression. Bioresource Technology, 2015, 175, 325-332.	4.8	29
72	Treatment of a submerged anaerobic membrane bioreactor (SAnMBR) effluent by an activated sludge system: The role of sulphide and thiosulphate in the process. Journal of Environmental Management, 2015, 147, 213-218.	3.8	11

#	Article	IF	CITATIONS
73	Anaerobic treatment of urban wastewater in membrane bioreactors: evaluation of seasonal temperature variations. Water Science and Technology, 2014, 69, 1581-1588.	1.2	23
74	Global sensitivity analysis of a filtration model for submerged anaerobic membrane bioreactors (AnMBR). Bioresource Technology, 2014, 158, 365-373.	4.8	13
75	The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater. Separation and Purification Technology, 2014, 126, 30-38.	3.9	86
76	Mixed microalgae culture for ammonium removal in the absence of phosphorus: Effect of phosphorus supplementation and process modeling. Process Biochemistry, 2014, 49, 2249-2257.	1.8	18
77	Model-based automatic tuning of a filtration control system for submerged anaerobic membrane bioreactors (AnMBR). Journal of Membrane Science, 2014, 465, 14-26.	4.1	22
78	Mathematical modelling of filtration in submerged anaerobic MBRs (SAnMBRs): Long-term validation. Journal of Membrane Science, 2013, 446, 303-309.	4.1	17
79	Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures. Bioresource Technology, 2013, 149, 532-540.	4.8	43
80	A filtration model applied to submerged anaerobic MBRs (SAnMBRs). Journal of Membrane Science, 2013, 444, 139-147.	4.1	31
81	Study of the influence of temperature and precipitations on the levels of BTEX in natural waters. Journal of Hazardous Materials, 2013, 263, 131-138.	6.5	20
82	Removal and fate of endocrine disruptors chemicals under lab-scale postreatment stage. Removal assessment using light, oxygen and microalgae. Bioresource Technology, 2013, 149, 142-148.	4.8	40
83	Guidelines for alkylphenols estimation as alkylphenol polyethoxylates pollution indicator in wastewater treatment plant effluents. Analytical Methods, 2013, 5, 2209.	1.3	3
84	Biological Nutrient Removal Model No. 2 (BNRM2): a general model for wastewater treatment plants. Water Science and Technology, 2013, 67, 1481-1489.	1.2	53
85	Effect of pH and HNO2 concentration on the activity of ammonia-oxidizing bacteria in a partial nitritation reactor. Water Science and Technology, 2013, 67, 2587-2594.	1.2	33
86	Micropollutants removal in an anaerobic membrane bioreactor and in an aerobic conventional treatment plant. Water Science and Technology, 2012, 65, 2242-2250.	1.2	27
87	Reliable method for assessing the COD mass balance of a submerged anaerobic membrane bioreactor (SAMBR) treating sulphate-rich municipal wastewater. Water Science and Technology, 2012, 66, 494-502.	1.2	15
88	Application of the general model â€~Biological Nutrient Removal Model No. 1' to upgrade two full-scale WWTPs. Environmental Technology (United Kingdom), 2012, 33, 1005-1012.	1.2	11
89	Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage. Water Research, 2012, 46, 1889-1900.	5.3	148
90	An improved sampling strategy based on trajectory design for application of the Morris method to systems with many input factors. Environmental Modelling and Software, 2012, 37, 103-109.	1.9	86

#	Article	IF	CITATIONS
91	Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology, 2012, 118, 67-72.	4.8	95
92	Effect of pH, substrate and free nitrous acid concentrations on ammonium oxidation rate. Bioresource Technology, 2012, 124, 478-484.	4.8	25
93	Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, 2012, 126, 247-253.	4.8	186
94	Real-time control strategy for nitrogen removal via nitrite in a SHARON reactor using pH and ORP sensors. Process Biochemistry, 2012, 47, 1510-1515.	1.8	24
95	An advanced control strategy for biological nutrient removal in continuous systems based on pH and ORP sensors. Chemical Engineering Journal, 2012, 183, 212-221.	6.6	42
96	Modelling biological and chemically induced precipitation of calcium phosphate in enhanced biological phosphorus removal systems. Water Research, 2011, 45, 3744-3752.	5.3	64
97	Occurrence of priority pollutants in WWTP effluents and Mediterranean coastal waters of Spain. Marine Pollution Bulletin, 2011, 62, 615-625.	2.3	51
98	Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 2011, 102, 8799-8806.	4.8	159
99	Alkylphenols and polycyclic aromatic hydrocarbons in eastern Mediterranean Spanish coastal marine bivalves. Environmental Monitoring and Assessment, 2011, 176, 169-181.	1.3	32
100	Monitoring pH and ORP in a SHARON reactor. Water Science and Technology, 2011, 63, 2505-2512.	1.2	10
101	DSC: software tool for simulation-based design of control strategies applied to wastewater treatment plants. Water Science and Technology, 2011, 63, 796-803.	1.2	1
102	Wastewater COD characterization: analysis of respirometric and physicalâ€chemical methods for determining biodegradable organic matter fractions. Journal of Chemical Technology and Biotechnology, 2010, 85, 536-544.	1.6	10
103	A systematic approach for fine-tuning of fuzzy controllers applied to WWTPs. Environmental Modelling and Software, 2010, 25, 670-676.	1.9	20
104	Struvite formation from the supernatants of an anaerobic digestion pilot plant. Bioresource Technology, 2010, 101, 118-125.	4.8	116
105	Short-term effect of ammonia concentration and salinity on activity of ammonia oxidizing bacteria. Water Science and Technology, 2010, 61, 3008-3016.	1.2	20
106	Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation. Water Research, 2010, 44, 2371-2379.	5.3	117
107	Calibration of denitrifying activity of polyphosphate accumulating organisms in an extended ASM2d model. Water Research, 2010, 44, 5284-5297.	5.3	15
108	Low cost-sensors as a real alternative to on-line nitrogen analysers in continuous systems. Water Science and Technology, 2009, 60, 3261-3268.	1.2	19

#	Article	IF	CITATIONS
109	Use of neurofuzzy networks to improve wastewater flow-rate forecasting. Environmental Modelling and Software, 2009, 24, 686-693.	1.9	46
110	Precipitation assessment in wastewater treatment plants operated for biological nutrient removal: A case study in Murcia, Spain. Journal of Environmental Management, 2009, 90, 850-857.	3.8	30
111	A methodology for sequencing batch reactor identification with artificial neural networks: A case study. Computers and Chemical Engineering, 2009, 33, 465-472.	2.0	38
112	Using SOM and PCA for analysing and interpreting data from a P-removal SBR. Engineering Applications of Artificial Intelligence, 2008, 21, 919-930.	4.3	57
113	Using Unfold-PCA for batch-to-batch start-up process understanding and steady-state identification in a sequencing batch reactor. Journal of Chemometrics, 2008, 22, 81-90.	0.7	9
114	Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants. Bioresource Technology, 2008, 99, 4817-4824.	4.8	88
115	A pilot-scale study of struvite precipitation in a stirred tank reactor: Conditions influencing the process. Bioresource Technology, 2008, 99, 6285-6291.	4.8	163
116	DESASS: A software tool for designing, simulating and optimising WWTPs. Environmental Modelling and Software, 2008, 23, 19-26.	1.9	60
117	Struvite precipitation assessment in anaerobic digestion processes. Chemical Engineering Journal, 2008, 141, 67-74.	6.6	160
118	Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism. Water Research, 2008, 42, 3415-3424.	5.3	62
119	Optimisation of sludge line management to enhance phosphorus recovery in WWTP. Water Research, 2008, 42, 4609-4618.	5.3	33
120	DETECTION AND PREVENTION OF ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL DETERIORATION CAUSED BY ZOOGLOEA OVERABUNDANCE. Environmental Technology (United Kingdom), 2008, 29, 35-42.	1.2	9
121	Calcium phosphate precipitation in a SBR operated for EBPR: interactions with the biological process. Water Science and Technology, 2008, 58, 427-433.	1.2	7
122	Fermentation and elutriation of primary sludge: Effect of SRT on process performance. Water Research, 2007, 41, 747-756.	5.3	42
123	Process understanding of a wastewater batch reactor with block-wise PLS. Environmetrics, 2007, 18, 551-560.	0.6	8
124	Multivariate SPC of a sequencing batch reactor for wastewater treatment. Chemometrics and Intelligent Laboratory Systems, 2007, 85, 82-93.	1.8	44
125	Calcium effect on enhanced biological phosphorus removal. Water Science and Technology, 2006, 53, 29-37.	1.2	19
126	Optimum design and operation of primary sludge fermentation schemes for volatile fatty acids production. Water Research, 2006, 40, 53-60.	5.3	26

#	Article	IF	CITATIONS
127	Calibration and simulation of ASM2d at different temperatures in a phosphorus removal pilot plant. Water Science and Technology, 2006, 53, 199-206.	1.2	13
128	Application of a fuzzy algorithm for pH control in a struvite crystallisation reactor. Water Science and Technology, 2006, 53, 161-168.	1.2	9
129	Comparison of different predictive models for nutrient estimation in a sequencing batch reactor for wastewater treatment. Chemometrics and Intelligent Laboratory Systems, 2006, 84, 75-81.	1.8	39
130	Relating ions concentration variations to conductivity variations in a sequencing batch reactor operated for enhanced biological phosphorus removal. Environmental Modelling and Software, 2006, 21, 845-851.	1.9	47
131	Effect of pH on biological phosphorus uptake. Biotechnology and Bioengineering, 2006, 95, 875-882.	1.7	11
132	Simple Rule-Based Algorithm for Optimizing Volatile Fatty Acids Production in Primary Sludge Fermentation Schemes. Journal of Environmental Engineering, ASCE, 2006, 132, 1439-1446.	0.7	0
133	The Role of Potassium, Magnesium and Calcium in the Enhanced Biological Phosphorus Removal Treatment Plants. Environmental Technology (United Kingdom), 2005, 26, 983-992.	1.2	32
134	Monitoring pH and electric conductivity in an EBPR sequencing batch reactor. Water Science and Technology, 2004, 50, 145-152.	1.2	18
135	Biological nutrient removal model No.1 (BNRM1). Water Science and Technology, 2004, 50, 69-70.	1.2	66
136	Use of Biological and Sedimentation Models for Designing PeñÃscola WWTP. Environmental Technology (United Kingdom), 2004, 25, 681-687.	1.2	3
137	An extension of ASM2d including pH calculation. Water Research, 2004, 38, 4029-4038.	5.3	34
138	Biological nutrient removal model No.1 (BNRM1). Water Science and Technology, 2004, 50, 69-78.	1.2	2
139	Design of nutrient removal activated sludge systems. Water Science and Technology, 2003, 47, 115-122.	1.2	4
140	Calibration and Validation of Activated Sludge Model No.2d for Spanish Municipal Wastewater. Environmental Technology (United Kingdom), 2002, 23, 849-862.	1.2	16
141	Modelling of an Activated Primary Settling Tank Including the Fermentation Process and VFA Elutriation. Environmental Technology (United Kingdom), 2002, 23, 1147-1156.	1.2	11
142	Fermentation of Municipal Primary Sludge: Effect of Srt and Solids Concentration on Volatile Fatty Acid Production. Environmental Technology (United Kingdom), 2002, 23, 863-875.	1.2	23
143	A supervisory control system for optimising nitrogen removal and aeration energy consumption in wastewater treatment plants. Water Science and Technology, 2002, 45, 309-316.	1.2	41
144	A modification to the Activated Sludge Model No. 2 based on the competition between phosphorus-accumulating organisms and glycogen-accumulating organisms. Water Science and Technology, 2001, 43, 161-171.	1.2	35

#	Article	IF	CITATIONS
145	Evaluation of Activated Sludge Model No.2 at High Phosphorus Concentrations. Environmental Technology (United Kingdom), 2001, 22, 497-507.	1.2	1
146	A Steady-State Model for the Design of Biological Wastewater Treatment Facilities. Environmental Technology (United Kingdom), 2000, 21, 733-744.	1.2	0
147	Cadmium and Copper Removal by a Granular Activated Carbon in Laboratory Column Systems. Separation Science and Technology, 2000, 35, 1039-1053.	1.3	50
148	The Effect of Sludge Age on the Deterioration of the Enhanced Biological Phosphorus Removal Process. Environmental Technology (United Kingdom), 1999, 20, 1055-1063.	1.2	21
149	Nonlinear control of an activated sludge aeration process: use of fuzzy techniques for tuning PID controllers. ISA Transactions, 1999, 38, 231-241.	3.1	29
150	Effect of pH, cation concentration and sorbent concentration on cadmium and copper removal by a granular activated carbon. Journal of Chemical Technology and Biotechnology, 1999, 74, 911-918.	1.6	64
151	Study of the Adsorption of Cd and Zn onto an Activated Carbon: Influence of pH, Cation Concentration, and Adsorbent Concentration. Separation Science and Technology, 1999, 34, 1577-1593.	1.3	22
152	Energy saving in the aeration process by fuzzy logic control. Water Science and Technology, 1998, 38, 209.	1.2	42
153	A software for the integrated design of wastewater treatment plants. Environmental Modelling and Software, 1998, 13, 31-44.	1.9	11
154	Adsorption of Heavy Metals from Aqueous Solutions onto Activated Carbon in Single Cu and Ni Systems and in Binary Cu-Ni, Cu-Cd and Cu-Zn Systems. Journal of Chemical Technology and Biotechnology, 1997, 68, 23-30.	1.6	116
155	Title is missing!. Water, Air, and Soil Pollution, 1997, 94, 349-360.	1.1	0
156	Single and competitive adsorption of Cd and Zn onto a granular activated carbon. Water Research, 1996, 30, 3050-3060.	5.3	98
157	Cadmium and Zinc Adsorption onto Activated Carbon: Influence of Temperature, pH and Metal/Carbon Ratio. Journal of Chemical Technology and Biotechnology, 1996, 66, 279-285.	1.6	103
158	Influence of sludge age on enhanced phosphorus removal in biological systems. Water Science and Technology, 1996, 34, 41.	1.2	12
159	Isobaric Vapor-Liquid Equilibria of 1-Butanol + N,N-Dimethylformamide and 1-Pentanol + N,N-Dimethylformamide Systems at 50.00 and 100.00 kPa. Journal of Chemical & Engineering Data, 1995, 40, 589-592.	1.0	10
160	Modeling multiple reactive solute transport with adsorption under equilibrium and nonequilibrium conditions. Advances in Water Resources, 1994, 17, 363-374.	1.7	7
161	Control of activated sludge settleability using preaeration and preprecipitation. Water Research, 1993, 27, 293-296.	5.3	6
162	Study of the Factors Affecting Activated Sludge Settling in Domestic Wastewater Treatment Plants. Water Science and Technology, 1992, 25, 273-279.	1.2	9