
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8561694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. Journal of Biotechnology, 2004, 107, 65-72.	3.8	424
2	In vitrofermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. Journal of the Science of Food and Agriculture, 2002, 82, 781-789.	3.5	286
3	Two major xylanases of Trichoderma reesei. Enzyme and Microbial Technology, 1992, 14, 566-574.	3.2	240
4	Characterization of O-acetyl-(4-O-methylglucurono)xylan isolated from birch and beech. Carbohydrate Research, 2002, 337, 373-377.	2.3	225
5	Spruce-derived mannans – A potential raw material for hydrocolloids and novel advanced natural materials. Carbohydrate Polymers, 2008, 72, 197-210.	10.2	222
6	In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiology, 2009, 26, 734-743.	4.2	206
7	Purification and characterization of two Î ² -mannanases from Trichoderma reesei. Journal of Biotechnology, 1993, 29, 229-242.	3.8	202
8	Sustainable food-packaging materials based on future biorefinery products: Xylans and mannans. Trends in Food Science and Technology, 2012, 28, 90-102.	15.1	174
9	NMR spectroscopic analysis of exopolysaccharides produced by Leuconostoc citreum and Weissella confusa. Carbohydrate Research, 2008, 343, 1446-1455.	2.3	166
10	cDNA Cloning of a Trichoderma reesei Cellulase and Demonstration of Endoglucanase Activity by Expression in Yeast. FEBS Journal, 1997, 249, 584-591.	0.2	159
11	Acetylation of woody lignocellulose: significance and regulation. Frontiers in Plant Science, 2013, 4, 118.	3.6	147
12	Production, purification and characterization of an esterase liberating phenolic acids from lignocellulosics. Journal of Biotechnology, 1991, 18, 69-83.	3.8	146
13	Characterisation of 4-deoxy-β-l-threo-hex-4-enopyranosyluronic acid attached to xylan in pine kraft pulp and pulping liquor by 1H and 13C NMR spectroscopy. Carbohydrate Research, 1995, 272, 55-71.	2.3	142
14	An α-glucuronidase of Schizophyllum commune acting on polymeric xylan. Journal of Biotechnology, 2000, 78, 149-161.	3.8	142
15	Evaluation of Wet Oxidation Pretreatment for Enzymatic Hydrolysis of Softwood. Applied Biochemistry and Biotechnology, 2004, 117, 01-18.	2.9	142
16	The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnology for Biofuels, 2011, 4, 60.	6.2	137
17	Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei. Journal of Biotechnology, 2002, 99, 63-78.	3.8	134
18	Prospects of polysaccharide aerogels as modern advanced food materials. Trends in Food Science and Technology, 2013, 34, 124-136.	15.1	132

#	Article	IF	CITATIONS
19	Isolation and characterization of O-acetylated glucomannans from aspen and birch wood. Carbohydrate Research, 2003, 338, 525-534.	2.3	131
20	Interaction and Comparison of a Class I Hydrophobin fromSchizophyllum communeand Class II Hydrophobins fromTrichoderma reesei. Biomacromolecules, 2006, 7, 1295-1301.	5.4	125
21	In Vitro Fermentation of Arabinoxylan-Derived Carbohydrates by Bifidobacteria and Mixed Fecal Microbiota. Journal of Agricultural and Food Chemistry, 2009, 57, 8598-8606.	5.2	125
22	Material Properties of Films from Enzymatically Tailored Arabinoxylans. Biomacromolecules, 2008, 9, 2042-2047.	5.4	118
23	Effect of Polysaccharide Structure on Mechanical and Thermal Properties of Galactomannan-Based Films. Biomacromolecules, 2007, 8, 3198-3205.	5.4	117
24	Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. FEBS Journal, 2001, 268, 6498-6507.	0.2	116
25	Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydrate Polymers, 2011, 86, 1281-1290.	10.2	107
26	Action of Trichoderma reesei mannanase on galactoglucomannan in pine kraft pulp. Journal of Biotechnology, 1997, 57, 191-204.	3.8	104
27	Dynamic Interaction of <i>Trichoderma reesei</i> Cellobiohydrolases Cel6A and Cel7A and Cellulose at Equilibrium and during Hydrolysis. Applied and Environmental Microbiology, 1999, 65, 5229-5233.	3.1	101
28	Films from oat spelt arabinoxylan plasticized with glycerol and sorbitol. Journal of Applied Polymer Science, 2009, 114, 457-466.	2.6	100
29	Acetyl Xylan Esterase from Trichoderma reesei Contains an Active-Site Serine Residue and a Cellulose-Binding Domain. FEBS Journal, 1996, 237, 553-560.	0.2	94
30	Oxidation of Polysaccharides by Galactose Oxidase. Journal of Agricultural and Food Chemistry, 2010, 58, 262-271.	5.2	89
31	Wheat bran arabinoxylans: Chemical structure and film properties of three isolated fractions. Carbohydrate Polymers, 2011, 86, 852-859.	10.2	88
32	Three α-Galactosidase Genes ofTrichoderma reeseiCloned by Expression in Yeast. FEBS Journal, 1996, 240, 104-111.	0.2	87
33	Application of xylanases in the pulp and paper industry. Bioresource Technology, 1994, 50, 65-72.	9.6	84
34	Direct analysis of lignin and lignin-like components from softwood kraft pulp by Py-GC/MS techniques. Journal of Analytical and Applied Pyrolysis, 2005, 74, 123-128.	5.5	84
35	Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall <i>O</i> -Acetylation in Arabidopsis Â. Plant Physiology, 2013, 163, 1107-1117.	4.8	83
36	Spruce galactoglucomannan films show promising barrier properties. Carbohydrate Polymers, 2010, 79, 1107-1112.	10.2	82

#	Article	IF	CITATIONS
37	Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnology for Biofuels, 2011, 4, 12.	6.2	82
38	Carboxymethylation of alkali extracted xylan for preparation of bio-based packaging films. Carbohydrate Polymers, 2014, 100, 89-96.	10.2	80
39	Comprehensive Multidetector HPSEC Study on Solution Properties of Cereal Arabinoxylans in Aqueous and DMSO Solutions. Biomacromolecules, 2009, 10, 1962-1969.	5.4	78
40	Mannans as stabilizers of oil-in-water beverage emulsions. LWT - Food Science and Technology, 2009, 42, 849-855.	5.2	74
41	Expression of fungal acetyl xylan esterase in <i>Arabidopsis thaliana</i> improves saccharification of stem lignocellulose. Plant Biotechnology Journal, 2016, 14, 387-397.	8.3	72
42	Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella. Food Microbiology, 2015, 46, 418-427.	4.2	71
43	Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. Journal of Biotechnology, 2008, 136, 140-147.	3.8	70
44	The impact of fermentation with exopolysaccharide producing lactic acid bacteria on rheological, chemical and sensory properties of pureed carrots (Daucus carota L.). International Journal of Food Microbiology, 2015, 207, 109-118.	4.7	69
45	Bacterial nanocelluloseâ€reinforced arabinoxylan films. Journal of Applied Polymer Science, 2011, 122, 1030-1039.	2.6	68
46	Oxidation of methyl α-d-galactopyranoside by galactose oxidase: products formed and optimization of reaction conditions for production of aldehyde. Carbohydrate Research, 2009, 344, 14-20.	2.3	67
47	Xylanase <scp>XYN</scp> Â <scp>IV</scp> from <i><scp>T</scp>richodermaÂreesei</i> showing exo―and endoâ€xylanase activity. FEBS Journal, 2013, 280, 285-301.	4.7	67
48	Three-Dimensional Structure of the Catalytic Core of Acetylxylan Esterase from Trichoderma reesei: Insights into the Deacetylation Mechanism. Journal of Structural Biology, 2000, 132, 180-190.	2.8	66
49	Antioxidant Potential of Hydroxycinnamic Acid Glycoside Esters. Journal of Agricultural and Food Chemistry, 2008, 56, 4797-4805.	5.2	66
50	Oxidation with galactose oxidase: Multifunctional enzymatic catalysis. Journal of Molecular Catalysis B: Enzymatic, 2015, 120, 47-59.	1.8	66
51	In muro deacetylation of xylan affects lignin properties and improves saccharification of aspen wood. Biotechnology for Biofuels, 2017, 10, 98.	6.2	64
52	Identification of the acidic degradation products of hexenuronic acid and characterisation of hexenuronic acid-substituted xylooligosaccharides by NMR spectroscopy. Carbohydrate Research, 1996, 280, 197-208.	2.3	61
53	In situ synthesis of exopolysaccharides by Leuconostoc spp. and Weissella spp. and their rheological impacts in fava bean flour. International Journal of Food Microbiology, 2017, 248, 63-71.	4.7	61
54	Glucomannan composite films with cellulose nanowhiskers. Cellulose, 2010, 17, 69-81.	4.9	60

#	Article	IF	CITATIONS
55	Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose, 2011, 18, 713-726.	4.9	58
56	Sorption of dissolved galactoglucomannans and galactomannans to bleached kraft pulp. Cellulose, 2002, 9, 251-261.	4.9	56
57	Tissueâ€specific study across the stem reveals the chemistry and transcriptome dynamics of birch bark. New Phytologist, 2019, 222, 1816-1831.	7.3	56
58	Binding of hemicellulases on isolated polysaccharide substrates. Enzyme and Microbial Technology, 1995, 17, 499-505.	3.2	55
59	Arabinoxylan structure affects the reinforcement of films by microfibrillated cellulose. Cellulose, 2012, 19, 467-480.	4.9	54
60	O-Acetylation of glucuronoxylan in Arabidopsis thaliana wild type and its change in xylan biosynthesis mutants. Glycobiology, 2014, 24, 494-506.	2.5	54
61	A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans. Biotechnology for Biofuels, 2018, 11, 74.	6.2	53
62	Hydrolytic properties of a Î ² -mannosidase purified from Aspergillus niger. Journal of Biotechnology, 1999, 75, 281-289.	3.8	52
63	Structural Analysis of Enzyme-Resistant Isomaltooligosaccharides Reveals the Elongation of α-(1→3)-Linked Branches in Weissella confusa Dextran. Biomacromolecules, 2011, 12, 409-418.	5.4	52
64	Action of xylan deacetylating enzymes on monoacetyl derivatives of 4-nitrophenyl glycosides of β-d-xylopyranose and α-l-arabinofuranose. Journal of Biotechnology, 2011, 151, 137-142.	3.8	52
65	Extraction and chemical characterization of rye arabinoxylan and the effect of β-glucan on the mechanical and barrier properties of cast arabinoxylan films. Food Hydrocolloids, 2013, 30, 206-216.	10.7	51
66	Functional and Anionic Cellulose-Interacting Polymers by Selective Chemo-Enzymatic Carboxylation of Galactose-Containing Polysaccharides. Biomacromolecules, 2012, 13, 2418-2428.	5.4	50
67	Supercritical water treatment for cello-oligosaccharide production from microcrystalline cellulose. Carbohydrate Research, 2015, 401, 16-23.	2.3	50
68	Downregulation of <scp>RWA</scp> genes in hybrid aspen affects xylan acetylation and wood saccharification. New Phytologist, 2017, 214, 1491-1505.	7.3	50
69	Action of <i>Trichoderma Reesei</i> and <i>Aspergillus Oryzae</i> Esterases in the Deacetylation of Hemicelluloses. Biotechnology and Applied Biochemistry, 1998, 27, 19-24.	3.1	48
70	Products of hydrolysis of beechwood acetyl-4-O-methylglucuronoxylan by a xylanase and an acetyl xylan esterase. Enzyme and Microbial Technology, 1991, 13, 483-486.	3.2	47
71	Step-wise enzymatic preparation and structural characterization of singly and doubly substituted arabinoxylo-oligosaccharides with non-reducing end terminal branches. Carbohydrate Research, 2008, 343, 3049-3057.	2.3	47
72	An acetylglucomannan esterase of Aspergillus oryzae; purification, characterization and role in the hydrolysis of O-acetyl-galactoglucomannan. Journal of Biotechnology, 1995, 42, 197-206.	3.8	45

#	Article	IF	CITATIONS
73	Presence of 1→3-linked 2-O-β-d-xylopyranosyl-α-l-arabinofuranosyl side chains in cereal arabinoxylans. Carbohydrate Research, 2009, 344, 2480-2488.	2.3	45
74	Autohydrolysis of birch wood. Holzforschung, 2011, 65, .	1.9	45
75	Enzymatic deacetylation of galactoglucomannans. Applied Microbiology and Biotechnology, 1993, 39, 159.	3.6	44
76	Enzymatic oxidation as a potential new route to produce polysaccharide aerogels. RSC Advances, 2014, 4, 11884.	3.6	44
77	Regioselective deacetylation of cellulose acetates by acetyl xylan esterases of different CE-families. Journal of Biotechnology, 2003, 105, 95-104.	3.8	43
78	Substrate specificities of Penicillium simplicissimum α-galactosidases. Enzyme and Microbial Technology, 1998, 22, 192-198.	3.2	42
79	Rye bran as fermentation matrix boosts in situ dextran production by Weissella confusa compared to wheat bran. Applied Microbiology and Biotechnology, 2016, 100, 3499-3510.	3.6	42
80	Synthesis and Antioxidant Activity of Hydroxycinnamic Acid Xylan Esters. Journal of Agricultural and Food Chemistry, 2010, 58, 6937-6943.	5.2	39
81	The α-glucuronidase Agu1 from Schizophyllum commune is a member of a novel glycoside hydrolase family (GH115). Applied Microbiology and Biotechnology, 2011, 90, 1323-1332.	3.6	39
82	Films from Glyoxal-Crosslinked Spruce Galactoglucomannans Plasticized with Sorbitol. International Journal of Polymer Science, 2012, 2012, 1-8.	2.7	39
83	Xylo- and cello-oligosaccharide oxidation by gluco-oligosaccharide oxidase from Sarocladium strictumand variants with reduced substrate inhibition. Biotechnology for Biofuels, 2013, 6, 148.	6.2	39
84	Butylamino-functionalized cellulose nanocrystal films: barrier properties and mechanical strength. RSC Advances, 2015, 5, 15140-15146.	3.6	39
85	Exopolysaccharides Production during the Fermentation of Soybean and Fava Bean Flours by <i>Leuconostoc mesenteroides</i> DSM 20343. Journal of Agricultural and Food Chemistry, 2017, 65, 2805-2815.	5.2	39
86	Impact of in situ produced exopolysaccharides on rheology and texture of fava bean protein concentrate. Food Research International, 2019, 115, 191-199.	6.2	39
87	Effect of side groups on the action of β-xylosidase from Trichoderma reesei against substituted xylo-oligosaccharides. FEBS Letters, 1996, 399, 303-306.	2.8	38
88	Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. Journal of Materials Science, 2015, 50, 3189-3199.	3.7	38
89	Environmentally-compatible alkyd paints stabilized by wood hemicelluloses. Industrial Crops and Products, 2019, 133, 212-220.	5.2	37
90	Specific enzymatic tailoring of wheat arabinoxylan reveals the role of substitution on xylan film properties. Carbohydrate Polymers, 2013, 92, 733-740.	10.2	36

#	Article	IF	CITATIONS
91	Combination of internal and external plasticization of hydroxypropylated birch xylan tailors the properties of sustainable barrier films. European Polymer Journal, 2015, 66, 307-318.	5.4	36
92	Cloning and Characterization of a Weissella confusa Dextransucrase and Its Application in High Fibre Baking. PLoS ONE, 2015, 10, e0116418.	2.5	35
93	Feasibility of using atmospheric pressure matrix-assisted laser desorption/ionization with ion trap mass spectrometry in the analysis of acetylated xylooligosaccharides derived from hardwoods and Arabidopsis thaliana. Analytical and Bioanalytical Chemistry, 2011, 401, 2995-3009.	3.7	34
94	Challenges in analysis of high-molar mass dextrans: Comparison of HPSEC, AsFIFFF and DOSY NMR spectroscopy. Carbohydrate Polymers, 2014, 99, 199-207.	10.2	33
95	Purification and characterisation of a novel steryl esterase from Melanocarpus albomyces. Enzyme and Microbial Technology, 2006, 39, 265-273.	3.2	32
96	New enzyme-based method for analysis of water-soluble wheat arabinoxylans. Carbohydrate Research, 2008, 343, 521-529.	2.3	32
97	Crosslinking with ammonium zirconium carbonate improves the formation and properties of spruce galactoglucomannan films. Journal of Materials Science, 2013, 48, 4205-4213.	3.7	32
98	Purification and characterization of Aspergillus β-d-galactanases acting on β-1,4- and β-1,3/6-linked arabinogalactans. Carbohydrate Polymers, 2003, 53, 155-168.	10.2	31
99	Interactions between fava bean protein and dextrans produced by Leuconostoc pseudomesenteroides DSM 20193 and Weissella cibaria Sj 1b. Carbohydrate Polymers, 2018, 190, 315-323.	10.2	31
100	Adsorption and Activity of Trichoderma reesei Cellobiohydrolase I, Endoglucanase II, and the Corresponding Core Proteins on Steam Pretreated Willow. Applied Biochemistry and Biotechnology, 1999, 81, 81-90.	2.9	30
101	Molecular characterization and solution properties of enzymatically tailored arabinoxylans. International Journal of Biological Macromolecules, 2011, 49, 963-969.	7.5	30
102	Substituent-specific antibody against glucuronoxylan reveals close association of glucuronic acid and acetyl substituents and distinct labeling patterns in tree species. Planta, 2012, 236, 739-751.	3.2	30
103	Mesoporous guar galactomannan based biocomposite aerogels through enzymatic crosslinking. Composites Part A: Applied Science and Manufacturing, 2017, 94, 93-103.	7.6	30
104	A Novel Colletotrichum graminicola Raffinose Oxidase in the AA5 Family. Applied and Environmental Microbiology, 2017, 83, .	3.1	30
105	Endoxylanase II from Trichoderma reesei has several isoforms with different isoelectric points. Biotechnology and Applied Biochemistry, 2000, 31, 61.	3.1	28
106	Quantitation of 4-O-methylglucuronic acid from plant cell walls. Carbohydrate Polymers, 2013, 91, 626-630.	10.2	28
107	Targeted allylation and propargylation of galactose-containing polysaccharides in water. Carbohydrate Polymers, 2014, 100, 46-54.	10.2	28
108	Glycosylation of acetylxylan esterase from Trichoderma reesei. Glycobiology, 2002, 12, 291-298.	2.5	27

#	Article	IF	CITATIONS
109	Action of three GH51 and one GH54 $\hat{l}\pm$ -arabinofuranosidases on internally and terminally located arabinofuranosyl branches. Journal of Biotechnology, 2016, 229, 22-30.	3.8	27
110	Substrate and positional specificity of feruloyl esterases for monoferuloylated and monoacetylated 4-nitrophenyl glycosides. Journal of Biotechnology, 2007, 127, 235-243.	3.8	26
111	Structural Comparison of Arabinoxylans from Two Barley Side-Stream Fractions. Journal of Agricultural and Food Chemistry, 2008, 56, 5069-5077.	5.2	26
112	Lactose- and cellobiose-derived branched trisaccharides and a sucrose-containing trisaccharide produced by acceptor reactions of Weissella confusa dextransucrase. Food Chemistry, 2016, 190, 226-236.	8.2	26
113	Laccase/TEMPO oxidation in the production of mechanically strong arabinoxylan and glucomannan aerogels. Carbohydrate Polymers, 2017, 175, 377-386.	10.2	24
114	Comparison of Catalytic Properties of Acetyl Xylan Esterases from Three Carbohydrate Esterase Families. ACS Symposium Series, 2003, , 211-229.	0.5	23
115	Thermally stable hydrogels from enzymatically oxidized polysaccharides. Food Hydrocolloids, 2012, 26, 212-220.	10.7	23
116	Structural analysis of linear mixed-linkage glucooligosaccharides by tandem mass spectrometry. Food Chemistry, 2013, 136, 1496-1507.	8.2	23
117	Identification and structural analysis of cereal arabinoxylan-derived oligosaccharides by negative ionization HILIC-MS/MS. Food Chemistry, 2019, 275, 176-185.	8.2	22
118	Stereochemistry of the hydrolysis of glycosidic linkage by endo-β-1,4-xylanases ofTrichoderma reesei. FEBS Letters, 1994, 356, 137-140.	2.8	21
119	Isolation of cellotriosyl blocks from barley β-glucan with endo-1,4-β-glucanase from Trichoderma reesei. Carbohydrate Polymers, 2006, 64, 233-238.	10.2	21
120	Mutation of a pH-modulating residue in a GH51 α-l-arabinofuranosidase leads to a severe reduction of the secondary hydrolysis of transfuranosylation products. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 626-636.	2.4	20
121	Non-Alcoholic Beverages from Fermented Cereals with Increased Oligosaccharide Content. Food Technology and Biotechnology, 2016, 54, 36-44.	2.1	20
122	The effect of galactose side units and mannan chain length on the macromolecular characteristics of galactomannans. Carbohydrate Polymers, 2011, 86, 1230-1235.	10.2	19
123	Structure-Function Relationships in Hydrophobins: Probing the Role of Charged Side Chains. Applied and Environmental Microbiology, 2013, 79, 5533-5538.	3.1	19
124	Strengthening effect of nanofibrillated cellulose is dependent on enzymatically oxidized polysaccharide gel matrices. European Polymer Journal, 2015, 71, 171-184.	5.4	18
125	Biochemical and Structural Characterization of a Five-domain GH115 α-Glucuronidase from the Marine Bacterium Saccharophagus degradans 2-40T. Journal of Biological Chemistry, 2016, 291, 14120-14133.	3.4	18
126	Optimization of Isomaltooligosaccharide Size Distribution by Acceptor Reaction of <i>Weissella confusa</i> Dextransucrase and Characterization of Novel α-(1→2)-Branched Isomaltooligosaccharides. Journal of Agricultural and Food Chemistry, 2016, 64, 3276-3286.	5.2	18

8

#	Article	IF	CITATIONS
127	Functional comparison of versatile carbohydrate esterases from families CE1, CE6 and CE16 on acetyl-4-O-methylglucuronoxylan and acetyl-galactoglucomannan. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2398-2405.	2.4	18
128	Enzymatic analysis of levan produced by lactic acid bacteria in fermented doughs. Carbohydrate Polymers, 2019, 208, 285-293.	10.2	18
129	Active food packaging through controlled in situ production and release of hexanal. Food Chemistry: X, 2020, 5, 100074.	4.3	18
130	Hybrid Aspen Expressing a Carbohydrate Esterase Family 5 Acetyl Xylan Esterase Under Control of a Wood-Specific Promoter Shows Improved Saccharification. Frontiers in Plant Science, 2020, 11, 380.	3.6	18
131	4-O-Methyl-β-l-idopyranosyluronic acid linked to xylan from kraft pulp: isolation procedure and characterisation by NMR spectroscopy. Carbohydrate Research, 1996, 293, 1-13.	2.3	17
132	Active fungal GH115 α-glucuronidase produced in Arabidopsis thaliana affects only the UX1-reactive glucuronate decorations on native glucuronoxylans. BMC Biotechnology, 2015, 15, 56.	3.3	17
133	Crystallization and preliminary X-ray analysis of a novelTrichoderma reeseixylanase IV belonging to glycoside hydrolase family 5. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 542-544.	2.5	16
134	Behavior of polysaccharide assemblies in field-flow fractionation and size-exclusion chromatography. Analytical and Bioanalytical Chemistry, 2011, 399, 1467-1472.	3.7	16
135	A 1H NMR study of the specificity of α-l-arabinofuranosidases on natural and unnatural substrates. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3106-3114.	2.4	16
136	Effects of process parameters on the properties of barley containing snacks enriched with brewer's spent grain. Journal of Food Science and Technology, 2016, 53, 775-783.	2.8	16
137	Possibility of Increasing Mechanical Pulp Yield by Enzymatic Treatment. Holzforschung, 1994, 48, 436-440.	1.9	15
138	Substrate specificities of Aspergillus terreus α-arabinofuranosidases. Carbohydrate Polymers, 1998, 37, 131-141.	10.2	14
139	Wood cell wall mimicking for composite films of spruce nanofibrillated cellulose with spruce galactoglucomannan and arabinoglucuronoxylan. Journal of Materials Science, 2014, 49, 5043-5055.	3.7	14
140	Activity of an Aspergillus terreus α-arabinofuranosidase on phenolic-substituted oligosaccharides. Journal of Biotechnology, 1999, 67, 41-48.	3.8	13
141	Metal-mediated allylation of enzymatically oxidized methyl α-d-galactopyranoside. Carbohydrate Research, 2010, 345, 2610-2615.	2.3	13
142	Comparison of Microencapsulation Properties of Spruce Galactoglucomannans and Arabic Gum Using a Model Hydrophobic Core Compound. Journal of Agricultural and Food Chemistry, 2010, 58, 981-989.	5.2	12
143	Influence of a family 29 carbohydrate binding module on the activity of galactose oxidase from Fusarium graminearum. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 354-362.	2.4	12
144	Effects of process variables and addition of polydextrose and whey protein isolate on the properties of barley extrudates. International Journal of Food Science and Technology, 2012, 47, 1165-1175.	2.7	11

#	Article	IF	CITATIONS
145	Crystallization and shear modulus of a forming biopolymer film determined by <i>in situ</i> x-ray diffraction and ultrasound reflection methods. Journal of Applied Physics, 2008, 104, .	2.5	10
146	A family AA5_2 carbohydrate oxidase from Penicillium rubens displays functional overlap across the AA5 family. PLoS ONE, 2019, 14, e0216546.	2.5	10
147	Quantitative Comparison of Pyranose Dehydrogenase Action on Diverse Xylooligosaccharides. Frontiers in Chemistry, 2020, 8, 11.	3.6	10
148	Combined Production of Polymeric Birch Xylan and Paper Pulp by Alkaline Pre-extraction Followed by Alkaline Cooking. Industrial & Engineering Chemistry Research, 2014, 53, 8302-8310.	3.7	9
149	Colloidal features of softwood galactoglucomannans-rich extract. Carbohydrate Polymers, 2020, 241, 116368.	10.2	9
150	Carbohydrate esterase family 16 contains fungal hemicellulose acetyl esterases (HAEs) with varying specificity. New Biotechnology, 2022, 70, 28-38.	4.4	9
151	X-ray characterization of starch-based solid foams. Journal of Materials Science, 2011, 46, 3470-3479.	3.7	8
152	Structural characterization of the family GH115 α-glucuronidase from Amphibacillus xylanus yields insight into its coordinated action with α-arabinofuranosidases. New Biotechnology, 2021, 62, 49-56.	4.4	8
153	Enzymatic Tailoring of Hemicelluloses. ACS Symposium Series, 2003, , 292-311.	0.5	7
154	Purification, crystallization and preliminary X-ray diffraction analysis of theTrichoderma reeseihydrophobin HFBI. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1903-1905.	2.5	7
155	Glucuronic acid in Arabidopsis thaliana xylans carries a novel pentose substituent. International Journal of Biological Macromolecules, 2015, 79, 807-812.	7.5	7
156	Synchrotron Microtomography Reveals the Fine Three-Dimensional Porosity of Composite Polysaccharide Aerogels. Materials, 2017, 10, 871.	2.9	6
157	Field-Flow Fractionation of Cationic Cellulose Derivatives. Chromatographia, 2019, 82, 1827-1832.	1.3	6
158	Structure modeling and functional analysis of recombinant dextransucrase from Weissella confusa Cab3 expressed in Lactococcus lactis. Preparative Biochemistry and Biotechnology, 2016, 46, 822-832.	1.9	5
159	Constructing arabinofuranosidases for dual arabinoxylan debranching activity. Biotechnology and Bioengineering, 2018, 115, 41-49.	3.3	5
160	Separation of isomeric cereal-derived arabinoxylan-oligosaccharides by collision induced dissociation-travelling wave ion mobility spectrometry-tandem mass spectrometry (CID-TWIMS-MS/MS). Food Chemistry, 2022, 366, 130544.	8.2	5
161	Crystallization and preliminary X-ray diffraction studies of the catalytic core of acetyl xylan esterase from Trichoderma reesei. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 430-432.	2.5	4
162	Long-Term Physical Stability of Plasticized Hemicellulose Films. BioResources, 2013, 9, .	1.0	4

#	Article	IF	CITATIONS
163	Size-exclusion chromatography of xylan derivatives—the critical evaluation of macromolecular data. Analytical and Bioanalytical Chemistry, 2017, 409, 4811-4817.	3.7	4
164	Comparison of two wheat bran extracts in the sheet extrusion process. Industrial Crops and Products, 2016, 91, 1-5.	5.2	3
165	Specific Antibodies for Immunochemical Detection of Wood-Derived Hemicelluloses. ACS Symposium Series, 2003, , 140-156.	0.5	2
166	Valorization of Urban Street Tree Pruning Residues in Biorefineries by Steam Refining: Conversion Into Fibers, Emulsifiers, and Biogas. Frontiers in Chemistry, 2021, 9, 779609.	3.6	2
167	Cellulases in Food Processing. , 2002, , .		1
168	Enzymatic oxidation of plant polysaccharides adsorbed to cellulose surfaces. New Biotechnology, 2014, 31, S7-S8.	4.4	0