
Christoffer Karlsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8561693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rocking-Chair Proton Batteries with Conducting Redox Polymer Active Materials and Protic Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 19099-19108.	8.0	27
2	Highly Conductive Nonstoichiometric Protic Poly(ionic liquid) Electrolytes. ACS Applied Energy Materials, 2019, 2, 6841-6850.	5.1	17
3	Charge Transport in Nonstoichiometric 2-Fluoropyridinium Triflate Protic Ionic Liquids. Journal of Physical Chemistry C, 2019, 123, 23427-23432.	3.1	7
4	Structural Control of Charge Storage Capacity to Achieve 100% Doping in Vapor Phase-Polymerized PEDOT/Tosylate. ACS Omega, 2019, 4, 21818-21826.	3.5	10
5	Formation of persistent organic diradicals from N,N′-diphenyl-3,7-diazacyclooctanes. Monatshefte Für Chemie, 2019, 150, 77-84.	1.8	2
6	Nonstoichiometric Triazolium Protic Ionic Liquids for All-Organic Batteries. ACS Applied Energy Materials, 2018, 1, 6451-6462.	5.1	31
7	Quinone based conducting redox polymers for electrical energy storage. Russian Journal of Electrochemistry, 2017, 53, 8-15.	0.9	21
8	Polaron Disproportionation Charge Transport in a Conducting Redox Polymer. Journal of Physical Chemistry C, 2017, 121, 13078-13083.	3.1	11
9	Synthesis and characterization of poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole: investigation on backbone/pendant interactions in a conducting redox polymer. Physical Chemistry Chemical Physics, 2017, 19, 10427-10435.	2.8	7
10	Quantifying TEMPO Redox Polymer Charge Transport toward the Organic Radical Battery. ACS Applied Materials & Interfaces, 2017, 9, 10692-10698.	8.0	60
11	Hydroquinone–pyrrole dyads with varied linkers. Beilstein Journal of Organic Chemistry, 2016, 12, 89-96.	2.2	3
12	Stable Deep Doping of Vaporâ€Phase Polymerized Poly(3,4â€ethylenedioxythiophene)/Ionic Liquid Supercapacitors. ChemSusChem, 2016, 9, 2112-2121.	6.8	30
13	Charge Transport in TEMPO/Ionic Liquid Redox Polymers. ECS Meeting Abstracts, 2016, , .	0.0	0
14	Quinone Based Conducting Redox Polymers for Electric Energy Storage. ECS Meeting Abstracts, 2016, ,	0.0	0
15	Ion- and Electron Transport in Pyrrole/Quinone Conducting Redox Polymers Investigated by In Situ Conductivity Methods. Electrochimica Acta, 2015, 179, 336-342.	5.2	37
16	Impact of linker in polypyrrole/quinone conducting redox polymers. RSC Advances, 2015, 5, 11309-11316.	3.6	31
17	Phototriggerable peptidomimetics for the inhibition of Mycobacterium tuberculosis ribonucleotide reductase by targeting protein–protein binding. Organic and Biomolecular Chemistry, 2015, 13, 2612-2621.	2.8	12
18	Quinone pendant group kinetics in poly(pyrrol-3-ylhydroquinone). Journal of Electroanalytical Chemistry, 2014, 735, 95-98.	3.8	25

#	Article	IF	CITATIONS
19	Probing Polymer–Pendant Interactions in the Conducting Redox Polymer Poly(pyrrol-3-ylhydroquinone). Journal of Physical Chemistry C, 2014, 118, 23499-23508.	3.1	29
20	Polymer–Pendant Interactions in Poly(pyrrol-3-ylhydroquinone): A Solution for the Use of Conducting Polymers at Stable Conditions. Journal of Physical Chemistry C, 2013, 117, 23558-23567.	3.1	38
21	Investigation of the Redox Chemistry of Isoindole-4,7-diones. Journal of Physical Chemistry C, 2013, 117, 894-901.	3.1	26
22	Computational Electrochemistry Study of 16 Isoindole-4,7-diones as Candidates for Organic Cathode Materials. Journal of Physical Chemistry C, 2012, 116, 3793-3801.	3.1	43