Antonio J Guerra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8561683/publications.pdf

Version: 2024-02-01

18 papers	485 citations	12 h-index	993246 17 g-index
18	18	18	692 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Continuous Based Direct Ink Write for Tubular Cardiovascular Medical Devices. Polymers, 2021, 13, 77.	2.0	5
2	Real bifurcated vascular grafts manufacturing for tissue engineering. Procedia CIRP, 2020, 89, 92-97.	1.0	1
3	Stent's Manufacturing Field: Past, Present, and Future Prospects. , 2019, , .		6
4	Optimization of photocrosslinkable resin components and 3D printing process parameters. Acta Biomaterialia, 2019, 97, 154-161.	4.1	43
5	Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants. Current Drug Targets, 2019, 20, 823-838.	1.0	30
6	Minimum Quantity Lubrication in Fibre Laser Processing For Permanent Stents Manufacturing. Procedia Manufacturing, 2019, 41, 492-499.	1.9	3
7	Electrospun Tubular Scaffold for Stenting Application: A Proof of Concept. Procedia Manufacturing, 2019, 41, 312-319.	1.9	3
8	Three-Dimensional Tubular Printing of Bioabsorbable Stents: The Effects Process Parameters Have on In Vitro Degradation. 3D Printing and Additive Manufacturing, 2019, 6, 50-56.	1.4	9
9	3D-printed bioabsordable polycaprolactone stent: The effect of process parameters on its physical features. Materials and Design, 2018, 137, 430-437.	3.3	79
10	3D-printed Tubular Scaffolds for Vascular Tissue Engineering. Procedia CIRP, 2018, 68, 352-357.	1.0	26
11	Design of a Scaffold Parameter Selection System with Additive Manufacturing for a Biomedical Cell Culture. Materials, 2018, 11, 1427.	1.3	19
12	Screening of Additive Manufactured Scaffolds Designs for Triple Negative Breast Cancer 3D Cell Culture and Stem-Like Expansion. International Journal of Molecular Sciences, 2018, 19, 3148.	1.8	23
13	3D-Printed PCL/PLA Composite Stents: Towards a New Solution to Cardiovascular Problems. Materials, 2018, 11, 1679.	1.3	120
14	Effects of different sterilization processes on the properties of a novel 3Dâ€printed polycaprolactone stent. Polymers for Advanced Technologies, 2018, 29, 2327-2335.	1.6	28
15	Random Forest ensemble prediction of stent dimensions in microfabrication processes. International Journal of Advanced Manufacturing Technology, 2017, 91, 879-893.	1.5	14
16	Fibre laser cutting of polycaprolactone sheet for stents manufacturing: A feasibility study. Optics and Laser Technology, 2017, 95, 113-123.	2.2	32
17	Effect of fibre laser process on in-vitro degradation rate of a polycaprolactone stent a novel degradation study method. Polymer Degradation and Stability, 2017, 142, 42-49.	2.7	20
18	Fabrication of PCL/PLA Composite Tube for Stent Manufacturing. Procedia CIRP, 2017, 65, 231-235.	1.0	24