William T Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8561587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	COVID-19 Serology Control Panel Using the Dried-Tube Specimen Method. American Journal of Tropical Medicine and Hygiene, 2022, 106, 562-565.	1.4	1
2	Pharmacokinetics of convalescent plasma therapy in a COVID-19 patient with X-linked Agammaglobulinemia. Clinical Immunology Communications, 2022, 2, 57-61.	1.2	2
3	Evaluation of measles IgM antibody detection assays during the 2018-2019 outbreak in New York State. Diagnostic Microbiology and Infectious Disease, 2022, 104, 115741.	1.8	1
4	The Serological Sciences Network (SeroNet) for COVID-19: Depth and Breadth of Serology Assays and Plans for Assay Harmonization. MSphere, 2022, 7, .	2.9	16
5	Multiplexed detection and quantification of human antibody response to COVID-19 infection using a plasmon enhanced biosensor platform. Biosensors and Bioelectronics, 2021, 171, 112679.	10.1	89
6	Neutralizing Antibody Responses in COVID-19 Convalescent Sera. Journal of Infectious Diseases, 2021, 223, 47-55.	4.0	70
7	Performance evaluation of antibody-based point-of-care devices intended for the identification of immune responses to SARS-CoV-2. Diagnostic Microbiology and Infectious Disease, 2021, 99, 115298.	1.8	4
8	Testing-on-a-probe biosensors reveal association of early SARS-CoV-2 total antibodies and surrogate neutralizing antibodies with mortality in COVID-19 patients. Biosensors and Bioelectronics, 2021, 178, 113008.	10.1	21
9	Serological analysis reveals an imbalanced IgG subclass composition associated with COVID-19 disease severity. Cell Reports Medicine, 2021, 2, 100329.	6.5	65
10	In Utero Vertical Transmission of Coronavirus Disease 2019 in a Severely Ill 29-week Preterm Infant. AJP Reports, 2020, 10, e270-e274.	0.7	9
11	SARS-CoV-2 antibody characterization in emergency department, hospitalized and convalescent patients by two semi-quantitative immunoassays. Clinica Chimica Acta, 2020, 509, 117-125.	1.1	42
12	Development of Zika Virus Serological Testing Strategies in New York State. Journal of Clinical Microbiology, 2018, 56, .	3.9	20
13	Vital Signs: Update on Zika Virus–Associated Birth Defects and Evaluation of All U.S. Infants with Congenital Zika Virus Exposure — U.S. Zika Pregnancy Registry, 2016. Morbidity and Mortality Weekly Report, 2017, 66, 366-373.	15.1	235
14	Identification of secreted and membrane-bound bat immunoglobulin using a Microchiropteran-specific mouse monoclonal antibody. Developmental and Comparative Immunology, 2016, 65, 114-123.	2.3	4
15	Staphylococcal Enterotoxin B (SEB) Induces Memory CD4 T Cell Anergy in vivo and Impairs Recall Immunity to Unrelated Antigens. Journal of Clinical & Cellular Immunology, 2015, 06, 1-8.	1.5	20
16	Immune Markers Associated with Host Susceptibility to Infection with West Nile Virus. Viral Immunology, 2014, 27, 39-47.	1.3	31
17	Single Cell Analysis of Lipid Rafts. Methods in Molecular Biology, 2013, 1066, 131-145.	0.9	0
18	Superantigen-induced CD4 memory T cell anergy. I. Staphylococcal enterotoxin B induces Fyn-mediated negative signaling. Cellular Immunology, 2012, 276, 16-25.	3.0	17

2

WILLIAM T LEE

#	Article	IF	CITATIONS
19	Anergy in CD4 memory T lymphocytes. II. Abrogation of TCR-induced formation of membrane signaling complexes. Cellular Immunology, 2012, 276, 26-34.	3.0	5
20	Singleâ€Cell Analysis of Lipid Rafts in Lymphocytes and in T Cell–Containing Immunoconjugates. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2006, 27, Unit2.11.	1.1	1
21	Defective T cell receptor-mediated signal transduction in memory CD4 T lymphocytes exposed to superantigen or anti-T cell receptor antibodies. Cellular Immunology, 2006, 242, 80-90.	3.0	17
22	Differences in Signaling Molecule Organization between Naive and Memory CD4+ T Lymphocytes. Journal of Immunology, 2004, 173, 33-41.	0.8	42
23	Antigen-specific CD4 T cell clonal expansion and differentiation in the aged lymphoid microenvironment. Mechanisms of Ageing and Development, 2004, 125, 59-68.	4.6	8
24	Antigen-specific CD4 T cell clonal expansion and differentiation in the aged lymphoid microenvironment. Mechanisms of Ageing and Development, 2004, 125, 47-57.	4.6	14
25	Staphylococcal enterotoxin B induces anergy to conventional peptide in memory T cells. Cellular Immunology, 2003, 222, 144-155.	3.0	18
26	Exogenous Interleukin-12 Protects against Lethal Infection with Coxsackievirus B4. Journal of Virology, 2003, 77, 8272-8279.	3.4	26
27	Continued Antigen Stimulation Is Not Required During CD4+ T Cell Clonal Expansion. Journal of Immunology, 2002, 168, 1682-1689.	0.8	77
28	IFN-Î ³ Production by Th1 Cells Generated from Naive CD4+ T Cells Exposed to Norepinephrine. Journal of Immunology, 2001, 166, 232-240.	0.8	178
29	Cytokine Production by Naive and Primary Effector CD4+ T Cells Exposed to Norepinephrine. Brain, Behavior, and Immunity, 2000, 14, 239-255.	4.1	65
30	lmmunogenicity of a foreign peptide expressed within a capsid protein of an attenuated coxsackievirus. Vaccine, 2000, 19, 958-965.	3.8	14
31	T Cells Contribute to Disease Severity during Coxsackievirus B4 Infection. Journal of Virology, 1999, 73, 3080-3086.	3.4	35
32	Visualizing Memory Phenotype Development afterin VitroStimulation of CD4+T Cells. Cellular Immunology, 1998, 188, 1-11.	3.0	39
33	Differential Effects of Lead and cAMP on Development and Activities of Th1- and Th2-Lymphocytes. Toxicological Sciences, 1998, 43, 172-185.	3.1	97
34	Memory T Cell Tolerance to Superantigens is not due to Increased Susceptibility to Apoptosis. Journal of Autoimmunity, 1997, 10, 357-365.	6.5	0
35	In Vivothe Environmental Pollutants Lead and Mercury Induce Oligoclonal T Cell Responses Skewed toward Type-2 Reactivities. Cellular Immunology, 1997, 179, 185-195.	3.0	82
36	Staphylococcal Enterotoxin B Induces the Expression of Activation Markers on Murine Memory T Cells in the Absence of Proliferation or Lymphokine Secretion. Cellular Immunology, 1995, 162, 26-32.	3.0	10

WILLIAM T LEE

#	Article	IF	CITATIONS
37	Changes in expression of CD45R during the development of Th1 and Th2 cell lines. European Journal of Immunology, 1992, 22, 1455-1459.	2.9	18
38	The differential expression of homing and adhesion molecules on virgin and memory T cells in the mouse. Cellular Immunology, 1991, 132, 215-222.	3.0	87
39	Changes in expression of J11d on murine B cells during activation and generation of memory. Cellular Immunology, 1991, 137, 448-460.	3.0	16
40	Virgin T cells do not provide help for antigen-specific B cells in the absence of IL-4, IL-5, and IL-6. International Immunology, 1991, 3, 907-916.	4.0	21
41	Limiting dilution analysis of CD45Rhi and CD45Rlo T cells: Further evidence that CD45Rlo cells are memory cells. Cellular Immunology, 1990, 130, 459-471.	3.0	41
42	Membrane-impermeant cross-linking reagents: Application to the study of the cell surface receptor for IgE. Methods in Enzymology, 1987, 150, 503-512.	1.0	16
43	Synthesis and Regulation of the IgE Receptor on B Lymphocyte Cell Lines. International Archives of Allergy and Immunology, 1987, 82, 402-404.	2.1	3