List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8561253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production. Advanced Functional Materials, 2015, 25, 6885-6892.	14.9	898
2	Twinborn TiO ₂ –TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy and Environmental Science, 2017, 10, 1694-1703.	30.8	884
3	Selfâ€Assembled Freeâ€Standing Graphite Oxide Membrane. Advanced Materials, 2009, 21, 3007-3011.	21.0	868
4	On the origin of the stability of graphene oxide membranes in water. Nature Chemistry, 2015, 7, 166-170.	13.6	788
5	Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes. Advanced Materials, 2016, 28, 6932-6939.	21.0	751
6	Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage. ACS Nano, 2009, 3, 3730-3736.	14.6	694
7	Catalytic Effects in Lithium–Sulfur Batteries: Promoted Sulfur Transformation and Reduced Shuttle Effect. Advanced Science, 2018, 5, 1700270.	11.2	669
8	Dendriteâ€Free, Highâ€Rate, Longâ€Life Lithium Metal Batteries with a 3D Crossâ€Linked Network Polymer Electrolyte. Advanced Materials, 2017, 29, 1604460.	21.0	604
9	Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Materials, 2018, 13, 96-102.	18.0	568
10	Macroscopic 3D Porous Graphitic Carbon Nitride Monolith for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 4634-4639.	21.0	567
11	Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Scientific Reports, 2013, 3, 2975.	3.3	541
12	Flexible electrodes and supercapacitors for wearable energy storage: a review by category. Journal of Materials Chemistry A, 2016, 4, 4659-4685.	10.3	493
13	Capture and Catalytic Conversion of Polysulfides by In Situ Built TiO ₂ â€MXene Heterostructures for Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1900219.	19.5	481
14	A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale, 2014, 6, 13831-13837.	5.6	434
15	Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries. Advanced Science, 2020, 7, 1903088.	11.2	403
16	Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy and Environmental Science, 2017, 10, 370-376.	30.8	395
17	Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research. Advanced Materials, 2019, 31, e1806620.	21.0	390
18	Low Resistance–Integrated Allâ€Solidâ€State Battery Achieved by Li ₇ La ₃ Zr ₂ O ₁₂ Nanowire Upgrading Polyethylene Oxide (PEO) Composite Electrolyte and PEO Cathode Binder. Advanced Functional Materials, 2019, 29, 1805301.	14.9	390

#	Article	IF	CITATIONS
19	Fast Gelation of Ti ₃ C ₂ T <i>_x</i> MXene Initiated by Metal Ions. Advanced Materials, 2019, 31, e1902432.	21.0	389
20	Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Materials, 2016, 2, 107-138.	18.0	371
21	Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy and Environmental Science, 2015, 8, 1390-1403.	30.8	364
22	3D Macroscopic Architectures from Selfâ€Assembled MXene Hydrogels. Advanced Functional Materials, 2019, 29, 1903960.	14.9	360
23	A Corrosionâ€Resistant and Dendriteâ€Free Zinc Metal Anode in Aqueous Systems. Small, 2020, 16, e2001736.	10.0	354
24	Propelling polysulfides transformation for high-rate and long-life lithium–sulfur batteries. Nano Energy, 2017, 33, 306-312.	16.0	352
25	Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy and Environmental Science, 2016, 9, 3135-3142.	30.8	347
26	SiO ₂ Hollow Nanosphereâ€Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life. Advanced Energy Materials, 2016, 6, 1502214.	19.5	346
27	Compact 3D Copper with Uniform Porous Structure Derived by Electrochemical Dealloying as Dendriteâ€Free Lithium Metal Anode Current Collector. Advanced Energy Materials, 2018, 8, 1800266.	19.5	336
28	Selfâ€Assembly of Graphene Oxide at Interfaces. Advanced Materials, 2014, 26, 5586-5612.	21.0	334
29	Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy and Environmental Science, 2012, 5, 9595.	30.8	323
30	Twoâ€Dimensional Porous Carbon: Synthesis and Ionâ€Transport Properties. Advanced Materials, 2015, 27, 5388-5395.	21.0	318
31	Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 15356-15366.	10.3	317
32	Vertically Aligned Carbon Nanotubes Grown on Graphene Paper as Electrodes in Lithiumâ€Ion Batteries and Dye‣ensitized Solar Cells. Advanced Energy Materials, 2011, 1, 486-490.	19.5	309
33	Opening Twoâ€Dimensional Materials for Energy Conversion and Storage: A Concept. Advanced Energy Materials, 2017, 7, 1602684.	19.5	304
34	In Situ Synthesis of a Hierarchical All‣olid‣tate Electrolyte Based on Nitrile Materials for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1500353.	19.5	300
35	Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nature Communications, 2019, 10, 725.	12.8	289
36	Gassing in Li4Ti5O12-based batteries and its remedy. Scientific Reports, 2012, 2, 913.	3.3	284

#	Article	IF	CITATIONS
37	Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. Journal of Materials Chemistry, 2012, 22, 14076.	6.7	280
38	A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nature Sustainability, 2022, 5, 205-213.	23.7	277
39	Flexible and planar graphene conductive additives for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 9644.	6.7	276
40	Vertically Aligned Lithiophilic CuO Nanosheets on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries. Advanced Energy Materials, 2018, 8, 1703404.	19.5	274
41	Bidirectional Catalysts for Liquid–Solid Redox Conversion in Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2000315.	21.0	274
42	Porous Al Current Collector for Dendrite-Free Na Metal Anodes. Nano Letters, 2017, 17, 5862-5868.	9.1	255
43	A possible buckybowl-like structure of zeolite templated carbon. Carbon, 2009, 47, 1220-1230.	10.3	243
44	The Assembly of MXenes from 2D to 3D. Advanced Science, 2020, 7, 1903077.	11.2	231
45	Selective Catalysis Remedies Polysulfide Shuttling in Lithiumâ€6ulfur Batteries. Advanced Materials, 2021, 33, e2101006.	21.0	229
46	Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nature Communications, 2018, 9, 402.	12.8	227
47	Optimized Catalytic WS ₂ –WO ₃ Heterostructure Design for Accelerated Polysulfide Conversion in Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2000091.	19.5	221
48	Breathable and Wearable Energy Storage Based on Highly Flexible Paper Electrodes. Advanced Materials, 2016, 28, 9313-9319.	21.0	219
49	Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nature Communications, 2019, 10, 4244.	12.8	219
50	Rational design of MoS ₂ @graphene nanocables: towards high performance electrode materials for lithium ion batteries. Energy and Environmental Science, 2014, 7, 3320-3325.	30.8	218
51	A sheet-like porous carbon for high-rate supercapacitors produced by the carbonization of an eggplant. Carbon, 2015, 92, 11-14.	10.3	217
52	A Metalâ€Free Supercapacitor Electrode Material with a Record High Volumetric Capacitance over 800 F cm ^{â^'3} . Advanced Materials, 2015, 27, 8082-8087.	21.0	211
53	Progress and Perspective of Solid‣tate Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707570.	14.9	194
54	Simultaneous Production of Highâ€Performance Flexible Textile Electrodes and Fiber Electrodes for Wearable Energy Storage. Advanced Materials, 2016, 28, 1675-1681.	21.0	186

#	Article	IF	CITATIONS
55	Processable and Moldable Sodiumâ€Metal Anodes. Angewandte Chemie - International Edition, 2017, 56, 11921-11926.	13.8	186
56	Could graphene construct an effective conducting network in a high-power lithium ion battery?. Nano Energy, 2012, 1, 429-439.	16.0	185
57	Oriented and Interlinked Porous Carbon Nanosheets with an Extraordinary Capacitive Performance. Chemistry of Materials, 2014, 26, 6896-6903.	6.7	180
58	Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery. Nano Energy, 2016, 30, 1-8.	16.0	179
59	A bio-derived sheet-like porous carbon with thin-layer pore walls for ultrahigh-power supercapacitors. Nano Energy, 2020, 70, 104531.	16.0	168
60	Functional Carbons Remedy the Shuttling of Polysulfides in Lithium–Sulfur Batteries: Confining, Trapping, Blocking, and Breaking up. Advanced Functional Materials, 2018, 28, 1800508.	14.9	164
61	A Selfâ€Regulated Interface toward Highly Reversible Aqueous Zinc Batteries. Advanced Energy Materials, 2022, 12, .	19.5	164
62	Co-electro-deposition of the MnO2–PEDOT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices. Journal of Materials Chemistry A, 2013, 1, 12432.	10.3	163
63	Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energy Storage Materials, 2016, 3, 18-23.	18.0	163
64	Encapsulating V ₂ O ₅ into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries. Energy and Environmental Science, 2016, 9, 906-911.	30.8	162
65	A review of gassing behavior in Li ₄ Ti ₅ O ₁₂ -based lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 6368-6381.	10.3	157
66	Biomass Organs Control the Porosity of Their Pyrolyzed Carbon. Advanced Functional Materials, 2017, 27, 1604687.	14.9	154
67	Self-Assembled 3D Graphene Monolith from Solution. Journal of Physical Chemistry Letters, 2015, 6, 658-668.	4.6	152
68	Reduction of Graphene Oxide by Hydrogen Sulfide: A Promising Strategy for Pollutant Control and as an Electrode for Liâ€6 Batteries. Advanced Energy Materials, 2014, 4, 1301565.	19.5	149
69	Ethers Illume Sodiumâ€Based Battery Chemistry: Uniqueness, Surprise, and Challenges. Advanced Energy Materials, 2018, 8, 1801361.	19.5	149
70	Graphitic Carbon Nitride Induced Microâ€Electric Field for Dendriteâ€Free Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1803186.	19.5	147
71	A high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroform. Journal of Power Sources, 2015, 282, 174-178.	7.8	144
72	Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. Journal of Power Sources, 2012, 202, 253-261.	7.8	142

#	Article	IF	CITATIONS
73	Combining Fast Li-Ion Battery Cycling with Large Volumetric Energy Density: Grain Boundary Induced High Electronic and Ionic Conductivity in Li ₄ Ti ₅ O ₁₂ Spheres of Densely Packed Nanocrystallites. Chemistry of Materials, 2015, 27, 5647-5656.	6.7	142
74	Cobalt-Doping of Molybdenum Disulfide for Enhanced Catalytic Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 7491-7499.	14.6	136
75	Porous MnO2 for use in a high performance supercapacitor: replication of a 3D graphene network as a reactive template. Chemical Communications, 2013, 49, 11092.	4.1	134
76	Towards low temperature thermal exfoliation of graphite oxide for graphene production. Carbon, 2013, 62, 11-24.	10.3	132
77	A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Materials Horizons, 2018, 5, 275-284.	12.2	129
78	One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium–sulfur batteries. Journal of Power Sources, 2015, 295, 182-189.	7.8	128
79	Hierarchical MoS ₂ /Carbon microspheres as long-life and high-rate anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 5668-5677.	10.3	128
80	Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics. ACS Nano, 2015, 9, 5636-5645.	14.6	127
81	Enhanced Sulfur Redox and Polysulfide Regulation via Porous VN-Modified Separator for Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 5687-5694.	8.0	126
82	A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. Journal of Materials Chemistry, 2011, 21, 9014.	6.7	125
83	Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy, 2017, 34, 242-248.	16.0	122
84	N and S co-doped porous carbon spheres prepared using <scp> </scp> -cysteine as a dual functional agent for high-performance lithium–sulfur batteries. Chemical Communications, 2015, 51, 17720-17723.	4.1	121
85	Sulfur confined in nitrogen-doped microporous carbon used in a carbonate-based electrolyte for long-life, safe lithium-sulfur batteries. Carbon, 2016, 109, 1-6.	10.3	119
86	Capillary Encapsulation of Metallic Potassium in Aligned Carbon Nanotubes for Use as Stable Potassium Metal Anodes. Advanced Energy Materials, 2019, 9, 1901427.	19.5	118
87	Boosting Catalytic Activity by Seeding Nanocatalysts onto Interlayers to Inhibit Polysulfide Shuttling in Li–S Batteries. Advanced Functional Materials, 2021, 31, 2101980.	14.9	116
88	The effect of graphene wrapping on the performance of LiFePO4 for a lithium ion battery. Carbon, 2013, 57, 530-533.	10.3	115
89	Cellulose Nanofiber as a Distinct Structure-Directing Agent for Xylem-like Microhoneycomb Monoliths by Unidirectional Freeze-Drying. ACS Nano, 2016, 10, 10689-10697.	14.6	115
90	A Lightweight 3D Cu Nanowire Network with Phosphidation Gradient as Current Collector for Highâ€Đensity Nucleation and Stable Deposition of Lithium. Advanced Materials, 2019, 31, e1904991.	21.0	114

#	Article	IF	CITATIONS
91	Disassembly–Reassembly Approach to RuO ₂ /Graphene Composites for Ultrahigh Volumetric Capacitance Supercapacitor. Small, 2017, 13, 1701026.	10.0	113
92	Graphene-DNA hybrids: self-assembly and electrochemical detection performance. Journal of Materials Chemistry, 2010, 20, 6668.	6.7	112
93	Single-Atom Electrocatalysts for Lithium Sulfur Batteries: Progress, Opportunities, and Challenges. , 2020, 2, 1450-1463.		108
94	Design Rules of a Sulfur Redox Electrocatalyst for Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2110279.	21.0	108
95	Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries. Nano Energy, 2019, 60, 305-311.	16.0	106
96	Carbon enables the practical use of lithium metal in a battery. Carbon, 2017, 123, 744-755.	10.3	105
97	Revisiting the Roles of Natural Graphite in Ongoing Lithiumâ€lon Batteries. Advanced Materials, 2022, 34, e2106704.	21.0	99
98	Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries. Nano Research, 2018, 11, 3480-3489.	10.4	97
99	Dense Graphene Monolith for High Volumetric Energy Density Li–S Batteries. Advanced Energy Materials, 2018, 8, 1703438.	19.5	97
100	DNA-dispersed graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor. Electrochimica Acta, 2012, 73, 129-135.	5.2	96
101	A three-dimensional graphene skeleton as a fast electron and ion transport network for electrochemical applications. Journal of Materials Chemistry A, 2014, 2, 3031.	10.3	96
102	Dimensionality, Function and Performance of Carbon Materials in Energy Storage Devices. Advanced Energy Materials, 2022, 12, 2100775.	19.5	96
103	The Template Synthesis of Double Coaxial Carbon Nanotubes with Nitrogen-Doped and Boron-Doped Multiwalls. Journal of the American Chemical Society, 2005, 127, 8956-8957.	13.7	95
104	Lamellar MXene Composite Aerogels with Sandwiched Carbon Nanotubes Enable Stable Lithium–Sulfur Batteries with a High Sulfur Loading. Advanced Functional Materials, 2021, 31, 2100793.	14.9	95
105	Compressed porous graphene particles for use as supercapacitor electrodes with excellent volumetric performance. Nanoscale, 2015, 7, 18459-18463.	5.6	94
106	Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode–electrolyte interfacial fabrication in lithium-ion battery. Journal of Materials Chemistry A, 2014, 2, 20059-20066.	10.3	92
107	A high-density graphene–sulfur assembly: a promising cathode for compact Li–S batteries. Nanoscale, 2015, 7, 5592-5597.	5.6	92
108	Monolithic carbons with spheroidal and hierarchical pores produced by the linkage of functionalized graphene sheets. Carbon, 2014, 69, 169-177.	10.3	88

#	Article	IF	CITATIONS
109	Quantifying the Volumetric Performance Metrics of Supercapacitors. Advanced Energy Materials, 2019, 9, 1900079.	19.5	88
110	Two-dimensional materials for lithium/sodium-ion capacitors. Materials Today Energy, 2019, 11, 30-45.	4.7	88
111	How a very trace amount of graphene additive works for constructing an efficient conductive network in LiCoO2-based lithium-ion batteries. Carbon, 2016, 103, 356-362.	10.3	87
112	A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. Journal of Materials Chemistry A, 2017, 5, 18888-18895.	10.3	85
113	Ultrafast high-volumetric sodium storage of folded-graphene electrodes through surface-induced redox reactions. Energy Storage Materials, 2015, 1, 112-118.	18.0	83
114	A carbon sandwich electrode with graphene filling coated by N-doped porous carbon layers for lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 20218-20224.	10.3	83
115	Constructing a Highâ€Strength Solid Electrolyte Layer by In Vivo Alloying with Aluminum for an Ultrahighâ€Rate Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 1907343.	14.9	83
116	Stacking up layers of polyaniline/carbon nanotube networks inside papers as highly flexible electrodes with large areal capacitance and superior rate capability. Journal of Materials Chemistry A, 2017, 5, 19934-19942.	10.3	82
117	Advanced Materials for Capturing Particulate Matter: Progress and Perspectives. Small Methods, 2018, 2, 1800012.	8.6	82
118	Reversible electrochemical oxidation of sulfur in ionic liquid for high-voltage Alâ^'S batteries. Nature Communications, 2021, 12, 5714.	12.8	80
119	High-performance ultrafiltration membranes based on polyethersulfone–graphene oxide composites. RSC Advances, 2013, 3, 21394.	3.6	79
120	"Concrete―inspired construction of a silicon/carbon hybrid electrode for high performance lithium ion battery. Carbon, 2015, 93, 59-67.	10.3	78
121	Li-ion and Na-ion transportation and storage properties in various sized TiO ₂ spheres with hierarchical pores and high tap density. Journal of Materials Chemistry A, 2017, 5, 4359-4367.	10.3	78
122	From Micropores to Ultra-micropores inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage. Nano-Micro Letters, 2021, 13, 98.	27.0	78
123	The Interplay of Oxygen Functional Groups and Folded Texture in Densified Graphene Electrodes for Compact Sodiumâ€Ion Capacitors. Advanced Energy Materials, 2018, 8, 1702395.	19.5	75
124	Twin-functional graphene oxide: compacting with Fe 2 O 3 into a high volumetric capacity anode for lithium ion battery. Energy Storage Materials, 2017, 6, 98-103.	18.0	74
125	A Directional Strain Sensor Based on Anisotropic Microhoneycomb Cellulose Nanofiber arbon Nanotube Hybrid Aerogels Prepared by Unidirectional Freeze Drying. Small, 2019, 15, e1805363.	10.0	73
126	MXenes induce epitaxial growth of size-controlled noble nanometals: A case study for surface enhanced Raman scattering (SERS). Journal of Materials Science and Technology, 2020, 40, 119-127.	10.7	73

#	Article	IF	CITATIONS
127	Interlayer engineering of Ti ₃ C ₂ T _x MXenes towards high capacitance supercapacitors. Nanoscale, 2020, 12, 763-771.	5.6	73
128	Realizing stable lithium deposition by <i>in situ</i> grown Cu ₂ S nanowires inside commercial Cu foam for lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 727-732.	10.3	72
129	Realizing High Volumetric Lithium Storage by Compact and Mechanically Stable Anode Designs. ACS Energy Letters, 2020, 5, 1986-1995.	17.4	72
130	Electrostatic-spraying an ultrathin, multifunctional and compact coating onto a cathode for a long-life and high-rate lithium-sulfur battery. Nano Energy, 2016, 30, 138-145.	16.0	71
131	A sliced orange-shaped ZnCo 2 O 4 material as anode for high-performance lithium ion battery. Energy Storage Materials, 2017, 6, 61-69.	18.0	71
132	Evolution of the effect of sulfur confinement in graphene-based porous carbons for use in Li–S batteries. Nanoscale, 2016, 8, 4447-4451.	5.6	69
133	Packing Activated Carbons into Dense Graphene Network by Capillarity for High Volumetric Performance Supercapacitors. Advanced Science, 2019, 6, 1802355.	11.2	69
134	An organic nickel salt-based electrolyte additive boosts homogeneous catalysis for lithium-sulfur batteries. Energy Storage Materials, 2020, 33, 290-297.	18.0	69
135	A graphene-based nanostructure with expanded ion transport channels for high rate Li-ion batteries. Chemical Communications, 2012, 48, 5904.	4.1	68
136	Necklace-like MoC sulfiphilic sites embedded in interconnected carbon networks for Li–S batteries with high sulfur loading. Journal of Materials Chemistry A, 2019, 7, 11298-11304.	10.3	68
137	Demystifying the catalysis in lithium–sulfur batteries: Characterization methods and techniques. SusMat, 2021, 1, 51-65.	14.9	68
138	Tailoring Microstructure of Grapheneâ€Based Membrane by Controlled Removal of Trapped Water Inspired by the Phase Diagram. Advanced Functional Materials, 2014, 24, 3456-3463.	14.9	67
139	Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts. Scientific Reports, 2014, 4, 6289.	3.3	67
140	Highâ€Đensity Microporous Li ₄ Ti ₅ O ₁₂ Microbars with Superior Rate Performance for Lithiumâ€lon Batteries. Advanced Science, 2017, 4, 1600311.	11.2	66
141	Graphitic carbon nitride nanosheet-assisted preparation of N-enriched mesoporous carbon nanofibers with improved capacitive performance. Carbon, 2015, 94, 342-348.	10.3	65
142	Deactivating Defects in Graphenes with Al ₂ O ₃ Nanoclusters to Produce Longâ€Life and Highâ€Rate Sodiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1803078.	19.5	65
143	Bulk Storage Capacity of Hydrogen in Purified Multiwalled Carbon Nanotubes. Journal of Physical Chemistry B, 2002, 106, 963-966.	2.6	64
144	One-pot self-assembly of three-dimensional graphene macroassemblies with porous core and layered shell. Journal of Materials Chemistry, 2011, 21, 12352.	6.7	64

#	Article	IF	CITATIONS
145	Hybridization of graphene oxide and carbon nanotubes at the liquid/air interface. Chemical Communications, 2012, 48, 3706-3708.	4.1	64
146	Processable and Moldable Sodiumâ€Metal Anodes. Angewandte Chemie, 2017, 129, 12083-12088.	2.0	64
147	Dual-functional hard template directed one-step formation of a hierarchical porous carbon–carbon nanotube hybrid for lithium–sulfur batteries. Chemical Communications, 2016, 52, 12143-12146.	4.1	63
148	Reduced-sized monolayer carbon nitride nanosheets for highly improved photoresponse for cell imaging and photocatalysis. Science China Materials, 2017, 60, 109-118.	6.3	60
149	1000 Wh Lâ^'1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes. National Science Review, 2021, 8, nwab012.	9.5	60
150	An air-stable and waterproof lithium metal anode enabled by wax composite packaging. Science Bulletin, 2019, 64, 910-917.	9.0	58
151	Reassembly of MXene Hydrogels into Flexible Films towards Compact and Ultrafast Supercapacitors. Advanced Functional Materials, 2021, 31, 2102874.	14.9	57
152	Graphene oxide hydrogel at solid/liquid interface. Chemical Communications, 2011, 47, 5771.	4.1	56
153	Graphene Emerges as a Versatile Template for Materials Preparation. Small, 2016, 12, 2674-2688.	10.0	56
154	Enhanced Roles of Carbon Architectures in High-Performance Lithium-Ion Batteries. Nano-Micro Letters, 2019, 11, 5.	27.0	56
155	Nitrate Additives Coordinated with Crown Ether Stabilize Lithium Metal Anodes in Carbonate Electrolyte. Advanced Functional Materials, 2021, 31, 2102128.	14.9	56
156	Highly Crystalline Lithium Titanium Oxide Sheets Coated with Nitrogenâ€Doped Carbon enable Highâ€Rate Lithiumâ€Ion Batteries. ChemSusChem, 2014, 7, 2567-2574.	6.8	55
157	A Composite Polymeric Carbon Nitride with In Situ Formed Isotype Heterojunctions for Highly Improved Photocatalysis under Visible Light. Small, 2017, 13, 1603182.	10.0	55
158	Engineering Graphenes from the Nano- to the Macroscale for Electrochemical Energy Storage. Electrochemical Energy Reviews, 2018, 1, 139-168.	25.5	55
159	A Protective Layer for Lithium Metal Anode: Why and How. Small Methods, 2021, 5, e2001035.	8.6	55
160	Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. National Science Review, 2022, 9, .	9.5	55
161	Functionalization of Graphene Sheets by Polyacetylene: Convenient Synthesis and Enhanced Emission. Macromolecular Chemistry and Physics, 2011, 212, 768-773.	2.2	54
162	Electrospray-deposition of graphene electrodes: a simple technique to build high-performance supercapacitors. Nanoscale, 2015, 7, 9133-9139.	5.6	54

#	Article	IF	CITATIONS
163	LiNi0.8Co0.15Al0.05O2 as both a trapper and accelerator of polysulfides for lithium-sulfur batteries. Energy Storage Materials, 2019, 17, 111-117.	18.0	54
164	Suppressing Al dendrite growth towards a long-life Al-metal battery. Energy Storage Materials, 2021, 34, 194-202.	18.0	54
165	A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes. Science China Materials, 2019, 62, 87-94.	6.3	53
166	Activated carbon fibers with manganese dioxide coating for flexible fiber supercapacitors with high capacitive performance. Journal of Energy Chemistry, 2019, 31, 95-100.	12.9	53
167	A unique carbon with a high specific surface area produced by the carbonization of agar in the presence of graphene. Chemical Communications, 2013, 49, 10427-10429.	4.1	52
168	A hybrid of holey graphene and Mn ₃ O ₄ and its oxygen reduction reaction performance. Chemical Communications, 2015, 51, 3911-3914.	4.1	52
169	A Functionalized Carbon Surface for Highâ€Performance Sodiumâ€ion Storage. Small, 2020, 16, e1902603.	10.0	51
170	Holey graphenes as the conductive additives for LiFePO4 batteries with an excellent rate performance. Carbon, 2019, 149, 257-262.	10.3	50
171	pH-dependent size, surface chemistry and electrochemical properties of graphene oxide. New Carbon Materials, 2013, 28, 327-335.	6.1	47
172	Room-temperature liquid metal-based anodes for high-energy potassium-based electrochemical devices. Chemical Communications, 2018, 54, 8032-8035.	4.1	47
173	Wasp nest-imitated assembly of elastic rGO/p-Ti3C2Tx MXene-cellulose nanofibers for high-performance sodium-ion batteries. Carbon, 2019, 153, 625-633.	10.3	47
174	Flowable sulfur template induced fully interconnected pore structures in graphene artefacts towards high volumetric potassium storage. Nano Energy, 2020, 72, 104729.	16.0	47
175	A Review of Compact Carbon Design for Supercapacitors with High Volumetric Performance. Small, 2021, 17, e2007548.	10.0	47
176	Porous MXene monoliths with locally laminated structure for enhanced pseudo-capacitance and fast sodium-ion storage. Nano Energy, 2021, 86, 106091.	16.0	47
177	Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction. Nature Communications, 2022, 13, .	12.8	47
178	Demonstrating U-shaped zinc deposition with 2D metal-organic framework nanoarrays for dendrite-free zinc batteries. Energy Storage Materials, 2022, 50, 641-647.	18.0	47
179	Conductive graphene-based macroscopic membrane self-assembled at a liquid–air interface. Journal of Materials Chemistry, 2011, 21, 3359.	6.7	46
180	Nanospace-confined formation of flattened Sn sheets in pre-seeded graphenes for lithium ion batteries. Nanoscale, 2014, 6, 9554-9558.	5.6	46

#	Article	IF	CITATIONS
181	Enhanced chemical trapping and catalytic conversion of polysulfides by diatomite/MXene hybrid interlayer for stable Li-S batteries. Journal of Energy Chemistry, 2021, 62, 590-598.	12.9	46
182	Dual electronic-ionic conductivity of pseudo-capacitive filler enables high volumetric capacitance from dense graphene micro-particles. Nano Energy, 2017, 36, 349-355.	16.0	45
183	Oxygen-enriched carbon nanotubes as a bifunctional catalyst promote the oxygen reduction/evolution reactions in Li-O2 batteries. Carbon, 2019, 141, 561-567.	10.3	45
184	A novel SnS ₂ @graphene nanocable network for high-performance lithium storage. RSC Advances, 2014, 4, 23372-23376.	3.6	44
185	A Li-ion sulfur full cell with ambient resistant Al-Li alloy anode. Energy Storage Materials, 2018, 15, 209-217.	18.0	44
186	Two-Dimensional Nanochannel Arrays Based on Flexible Montmorillonite Membranes. ACS Applied Materials & Interfaces, 2018, 10, 44915-44923.	8.0	44
187	Roles of Metal Ions in MXene Synthesis, Processing and Applications: A Perspective. Advanced Science, 2022, 9, e2200296.	11.2	44
188	Electrode thickness matching for achieving high-volumetric-performance lithium-ion capacitors. Energy Storage Materials, 2019, 18, 133-138.	18.0	43
189	Graphene aerogel derived by purification-free graphite oxide for high performance supercapacitor electrodes. Carbon, 2019, 146, 147-154.	10.3	43
190	Building a Beyond Concentrated Electrolyte for Highâ€Voltage Anodeâ€Free Rechargeable Sodium Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	43
191	Electrode thickness control: Precondition for quite different functions of graphene conductive additives in LiFePO4 electrode. Carbon, 2015, 92, 311-317.	10.3	42
192	Compact energy storage enabled by graphenes: Challenges, strategies and progress. Materials Today, 2021, 51, 552-565.	14.2	42
193	Liquid Metal Remedies Silicon Microparticulates Toward Highly Stable and Superior Volumetric Lithium Storage. Advanced Energy Materials, 2022, 12, .	19.5	42
194	A supercapacitor constructed with a partially graphitized porous carbon and its performance over a wide working temperature range. Journal of Materials Chemistry A, 2015, 3, 18860-18866.	10.3	41
195	Capillary shrinkage of graphene oxide hydrogels. Science China Materials, 2020, 63, 1870-1877.	6.3	41
196	Packing sulfur into carbon framework for high volumetric performance lithium-sulfur batteries. Science China Materials, 2015, 58, 349-354.	6.3	40
197	Liquid electrolyte immobilized in compact polymer matrix for stable sodium metal anodes. Energy Storage Materials, 2019, 23, 610-616.	18.0	40
198	Ultrafast presodiation of graphene anodes for highâ€efficiency and highâ€rate s <scp>odiumâ€ion</scp> storage. InformaÄnÃ-Materiály, 2021, 3, 1445-1454.	17.3	40

#	Article	IF	CITATIONS
199	A Nacreâ€Like Carbon Nanotube Sheet for High Performance Liâ€Polysulfide Batteries with High Sulfur Loading. Advanced Science, 2018, 5, 1800384.	11.2	39
200	Facile Synthesis of Crystalline Polymeric Carbon Nitrides with an Enhanced Photocatalytic Performance under Visible Light. ChemCatChem, 2015, 7, 2897-2902.	3.7	38
201	Interlayers for lithium-based batteries. Energy Storage Materials, 2019, 23, 112-136.	18.0	37
202	Constructing a highly efficient "solid–polymer–solid―elastic ion transport network in cathodes activates the room temperature performance of all-solid-state lithium batteries. Energy and Environmental Science, 2022, 15, 1503-1511.	30.8	36
203	A high-performance lithium ion oxygen battery consisting of Li2O2 cathode and lithiated aluminum anode with nafion membrane for reduced O2 crossover. Nano Energy, 2017, 40, 258-263.	16.0	35
204	A wavy graphene/platinum hybrid with increased electroactivity for the methanol oxidation reaction. Journal of Materials Chemistry A, 2014, 2, 1940-1946.	10.3	33
205	A Novel Lithiated Silicon–Sulfur Battery Exploiting an Optimized Solid‣ike Electrolyte to Enhance Safety and Cycle Life. Small, 2017, 13, 1602015.	10.0	33
206	Nitrogenâ€Doped Ordered Mesoporous Carbon with Different Morphologies for the Oxygen Reduction Reaction: Effect of Iron Species and Synergy of Textural Properties. ChemCatChem, 2015, 7, 2882-2890.	3.7	32
207	Electrode Design from "Internal―to "External―for High Stability Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 14142-14149.	8.0	32
208	Matching electrode lengths enables the practical use of asymmetric fiber supercapacitors with a high energy density. Nano Energy, 2021, 80, 105523.	16.0	32
209	Crowning Metal Ions by Supramolecularization as a General Remedy toward a Dendriteâ€Free Alkaliâ€Metal Battery. Advanced Materials, 2021, 33, e2101745.	21.0	32
210	Practical Graphene Technologies for Electrochemical Energy Storage. Advanced Functional Materials, 2022, 32, .	14.9	32
211	Promoted conversion of polysulfides by MoO2 inlaid ordered mesoporous carbons towards high performance lithium-sulfur batteries. Chinese Chemical Letters, 2019, 30, 521-524.	9.0	31
212	A multifunctional artificial protective layer for producing an ultra-stable lithium metal anode in a commercial carbonate electrolyte. Journal of Materials Chemistry A, 2021, 9, 7667-7674.	10.3	31
213	Inâ€situ Polymerized Gel Polymer Electrolytes with High Roomâ€Temperature Ionic Conductivity and Regulated Na ⁺ Solvation Structure for Sodium Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	31
214	Micron-sized Spherical Si/C Hybrids Assembled via Water/Oil System for High-Performance Lithium Ion Battery. Electrochimica Acta, 2016, 211, 982-988.	5.2	30
215	A Threeâ€Layer Allâ€Inâ€One Flexible Graphene Film Used as an Integrated Supercapacitor. Advanced Materials Interfaces, 2017, 4, 1700004.	3.7	30
216	Dense organic molecules/graphene network anodes with superior volumetric and areal performance for asymmetric supercapacitors. Journal of Materials Chemistry A, 2020, 8, 461-469.	10.3	30

#	Article	IF	CITATIONS
217	A Hollow Spherical Carbon Derived from the Spray Drying of Corncob Lignin for Highâ€Rateâ€Performance Supercapacitors. Chemistry - an Asian Journal, 2017, 12, 503-506.	3.3	29
218	WS2 nanoplates embedded in graphitic carbon nanotubes with excellent electrochemical performance for lithium and sodium storage. Science China Materials, 2018, 61, 671-678.	6.3	29
219	An ion-conducting SnS–SnS ₂ hybrid coating for commercial activated carbons enabling their use as high performance anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 10761-10768.	10.3	29
220	Li ₂ S ₄ Anchoring Governs the Catalytic Sulfur Reduction on Defective SmMn ₂ O ₅ in Lithium–Sulfur Battery. Advanced Energy Materials, 2022, 12, .	19.5	29
221	Electrolyte Sieving Chemistry in Suppressing Gas Evolution of Sodiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
222	Functionalization of graphene by tetraphenylethylene using nitrene chemistry. RSC Advances, 2012, 2, 7042.	3.6	28
223	Abundant grain boundaries activate highly efficient lithium ion transportation in high rate Li4Ti5O12 compact microspheres. Journal of Materials Chemistry A, 2019, 7, 1168-1176.	10.3	28
224	A Raman probe for selective wrapping of single-walled carbon nanotubes by DNA. Nanotechnology, 2007, 18, 405706.	2.6	27
225	Graphene-Templated Growth of WS ₂ Nanoclusters for Catalytic Conversion of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 4923-4930.	5.1	27
226	An interlaced silver vanadium oxide–graphene hybrid with high structural stability for use in lithium ion batteries. Chemical Communications, 2014, 50, 13447-13450.	4.1	26
227	A Dual-Function Na ₂ SO ₄ Template Directed Formation of Cathode Materials with a High Content of Sulfur Nanodots for Lithium-Sulfur Batteries. Small, 2017, 13, 1700358.	10.0	26
228	Building Carbonâ€Based Versatile Scaffolds on the Electrode Surface to Boost Capacitive Performance for Fiber Pseudocapacitors. Small, 2019, 15, e1900721.	10.0	26
229	MXene-assisted polymer coating from aqueous monomer solution towards dendrite-free zinc anodes. Journal of Energy Chemistry, 2022, 73, 277-284.	12.9	26
230	Easy fabrication of flexible and multilayer nanocarbon-based cathodes with a high unreal sulfur loading by electrostatic spraying for lithium-sulfur batteries. Carbon, 2018, 138, 18-25.	10.3	25
231	What Is the Right Carbon for Practical Anode in Alkali Metal Ion Batteries?. Small Science, 2021, 1, 2000063.	9.9	25
232	Towards a reliable Li-metal-free LiNO ₃ -free Li-ion polysulphide full cell <i>via</i> parallel interface engineering. Energy and Environmental Science, 2018, 11, 2509-2520.	30.8	24
233	A graphene/poly(vinyl alcohol) hybrid membrane self-assembled at the liquid/air interface: enhanced mechanical performance and promising saturable absorber. Journal of Materials Chemistry, 2012, 22, 17204.	6.7	23
234	A thick yet dense silicon anode with enhanced interface stability in lithium storage evidenced by in situ TEM observations. Science Bulletin, 2020, 65, 1563-1569.	9.0	23

#	Article	IF	CITATIONS
235	Sulfur-functionalized three-dimensional graphene monoliths as high-performance anodes for ultrafast sodium-ion storage. Chemical Communications, 2018, 54, 4317-4320.	4.1	22
236	Layered MXene Protected Lithium Metal Anode as an Efficient Polysulfide Blocker for Lithium‣ulfur Batteries. Batteries and Supercaps, 2020, 3, 892-899.	4.7	22
237	An Oxygenophilic Atomic Dispersed Feï£įNï£įC Catalyst for Leanâ€Oxygen Seawater Batteries. Advanced Energy Materials, 2021, 11, 2100683.	19.5	22
238	Coordinated Adsorption and Catalytic Conversion of Polysulfides Enabled by Perovskite Bimetallic Hydroxide Nanocages for Lithium‣ulfur Batteries. Small, 2021, 17, e2101538.	10.0	21
239	Direct assembly of micron-size porous graphene spheres with a high density as supercapacitor materials. Carbon, 2019, 149, 492-498.	10.3	20
240	Size Effects on the Mechanical Properties of Nanoporous Graphene Networks. Advanced Functional Materials, 2019, 29, 1900311.	14.9	20
241	pHâ€Dependent Morphology Control of Cellulose Nanofiber/Graphene Oxide Cryogels. Small, 2021, 17, e2005564.	10.0	20
242	A Planar Grapheneâ€Based Film Supercapacitor Formed by Liquid–Air Interfacial Assembly. Advanced Materials Interfaces, 2017, 4, 1601127.	3.7	19
243	Dense graphene monolith oxygen cathodes for ultrahigh volumetric energy densities. Energy Storage Materials, 2017, 9, 134-139.	18.0	19
244	A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries. New Carbon Materials, 2017, 32, 289-296.	6.1	19
245	Dendrite-Free Non-Newtonian Semisolid Lithium Metal Anode. ACS Energy Letters, 2021, 6, 3761-3768.	17.4	19
246	Carbonâ€Networkâ€Integrated SnSiO <i>_x</i> ₊₂ Nanofiber Sheathed by Ultrathin Graphitic Carbon for Highly Reversible Lithium Storage. Advanced Energy Materials, 2016, 6, 1502495.	19.5	18
247	Inside-out dual-doping effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Research, 2022, 15, 361-367.	10.4	18
248	Loosening the DNA wrapping around single-walled carbon nanotubes by increasing the strand length. Nanotechnology, 2009, 20, 195603.	2.6	17
249	A Carbonâ€Sulfur Hybrid with Pomegranateâ€like Structure for Lithiumâ€Sulfur Batteries. Chemistry - an Asian Journal, 2016, 11, 1343-1347.	3.3	17
250	Controllable Unzipping of Carbon Nanotubes as Advanced Pt Catalyst Supports for Oxygen Reduction. ACS Applied Energy Materials, 2019, 2, 5446-5455.	5.1	17
251	Graphene conductive additives for lithium ion batteries: Origin, progress and prospect. Chinese Science Bulletin, 2017, 62, 3743-3756.	0.7	17
252	Improvement of overcharge performance using Li4Ti5O12 as negative electrode for LiFePO4 power battery. Journal of Solid State Electrochemistry, 2012, 16, 265-271.	2.5	16

#	Article	IF	CITATIONS
253	Structure controllable carbon matrix derived from benzene-constructed porous organic polymers for high-performance Li-S batteries. Carbon, 2017, 116, 633-639.	10.3	16
254	Graphene-Directed Formation of a Nitrogen-Doped Porous Carbon Sheet with High Catalytic Performance for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 13508-13514.	3.1	16
255	<scp>l</scp> -Cysteine-Modified Acacia Gum as a Multifunctional Binder for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 47956-47962.	8.0	16
256	Realizing Ultralow Concentration Gelation of Graphene Oxide with Artificial Interfaces. Advanced Materials, 2019, 31, e1805075.	21.0	16
257	High-performance graphene/disodium terephthalate electrodes with ether electrolyte for exceptional cooperative sodiation/desodiation. Nano Energy, 2020, 77, 105203.	16.0	16
258	Aligned Macroporous Monoliths by Ice-Templating. Bulletin of the Chemical Society of Japan, 2022, 95, 611-620.	3.2	16
259	Safety properties of liquid state soft pack high power batteries with carbon-coated LiFePO4/graphite electrodes. Journal of Solid State Electrochemistry, 2010, 14, 751-756.	2.5	15
260	Porous graphene oxide-based carbon artefact with high capacity for methylene blue adsorption. Adsorption, 2016, 22, 1043-1050.	3.0	15
261	Improved performance of Li–Se battery based on a novel dual functional CNTs@graphene/CNTs cathode construction. Rare Metals, 2017, 36, 425-433.	7.1	15
262	A facile and processable integration strategy towards Schiff-base polymer-derived carbonaceous materials with high lithium storage performance. Nanoscale, 2018, 10, 10351-10356.	5.6	15
263	Building a Beyond Concentrated Electrolyte for Highâ€Voltage Anodeâ€Free Rechargeable Sodium Batteries. Angewandte Chemie, 2022, 134, .	2.0	15
264	Synergistically tuning the graphitic degree, porosity, and the configuration of active sites for highly active bifunctional catalysts and Zn-air batteries. Nano Research, 2022, 15, 7959-7967.	10.4	15
265	All-Polarization-Maintaining Femtosecond Fiber Lasers Using Graphene Oxide Saturable Absorber. IEEE Photonics Technology Letters, 2014, 26, 346-348.	2.5	12
266	H2S + SO2 produces water-dispersed sulfur nanoparticles for lithium-sulfur batteries. Nano Energy, 2017, 41, 665-673.	16.0	12
267	A Reduced Graphene Oxide/Disodium Terephthalate Hybrid as a Highâ€Performance Anode for Sodiumâ€ion Batteries. Chemistry - A European Journal, 2017, 23, 16586-16592.	3.3	12
268	Allâ€Solidâ€State Batteries: Low Resistance–Integrated Allâ€Solidâ€State Battery Achieved by Li ₇ La ₃ Zr ₂ O ₁₂ Nanowire Upgrading Polyethylene Oxide (PEO) Composite Electrolyte and PEO Cathode Binder (Adv. Funct. Mater. 1/2019). Advanced Functional Materials. 2019. 29. 1970006.	14.9	12
269	High-performance lithium–sulfur batteries enabled by regulating Li ₂ S deposition. Physical Chemistry Chemical Physics, 2021, 23, 21385-21398.	2.8	12
270	Vertical Graphenes Grown on a Flexible Graphite Paper as an All-Carbon Current Collector towards Stable Li Deposition. Research, 2020, 2020, 7163948.	5.7	12

#	Article	IF	CITATIONS
271	Ultrathin and Highâ€Modulus LiBO ₂ Layer Highly Elevates the Interfacial Dynamics and Stability of Lithium Anode under Wide Temperature Range. Small, 2022, 18, e2106427.	10.0	12
272	Lithium titanate hybridized with trace amount of graphene used as an anode for a high rate lithium ion battery. Electrochimica Acta, 2014, 142, 247-253.	5.2	11
273	Spatially Interlinked Graphene with Uniformly Loaded Sulfur for High Performance Liâ€5 Batteries. Chinese Journal of Chemistry, 2016, 34, 41-45.	4.9	11
274	Solid-State Electrolytes: Progress and Perspective of Solid-State Lithium-Sulfur Batteries (Adv. Funct.) Tj ETQq0 0	0 1gBT /O	verlock 10 Tf
275	Porous carbons derived from carbonization of tissue papers for supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 11250-11256.	2.2	11
276	Research Advances of Carbon-based Anode Materials for Sodium-Ion Batteries. Acta Chimica Sinica, 2017, 75, 163.	1.4	11
277	Supercapacitors: Packing Activated Carbons into Dense Graphene Network by Capillarity for High Volumetric Performance Supercapacitors (Adv. Sci. 14/2019). Advanced Science, 2019, 6, 1970086.	11.2	10
278	Fast three-dimensional assembly of MoS2 inspired by the gelation of graphene oxide. Science China Materials, 2019, 62, 745-750.	6.3	10
279	"Nano-spring―confined in a shrinkable graphene cage towards self-adaptable high-capacity anodes. Energy Storage Materials, 2022, 50, 554-562.	18.0	10
280	A Gelationâ€Assisted Approach for Versatile MXene Inks. Advanced Functional Materials, 2022, 32, .	14.9	10
281	Supercapacitors: A Metalâ€Free Supercapacitor Electrode Material with a Record High Volumetric Capacitance over 800 F cm ^{â^'3} (Adv. Mater. 48/2015). Advanced Materials, 2015, 27, 7898-7898.	21.0	9
282	Charging behavior of carbon black in a low-permittivity medium based on acid–base charging theory. Journal of Materials Chemistry C, 2015, 3, 3980-3988.	5.5	9
283	Dense yet highly ion permeable graphene electrodes obtained by capillary-drying of a holey graphene oxide assembly. Journal of Materials Chemistry A, 2019, 7, 12691-12697.	10.3	9
284	Synergetic effect of conductive additives on the performance of high power lithium ion batteries. New Carbon Materials, 2012, 27, 427-432.	6.1	8
285	A template oriented one-dimensional Schiff-base polymer: towards flexible nitrogen-enriched carbonaceous electrodes with ultrahigh electrochemical capacity. Nanoscale, 2021, 13, 19210-19217.	5.6	6
286	Stress-assisted design of stiffened graphene electrode structure toward compact energy storage. Journal of Energy Chemistry, 2022, 71, 478-487.	12.9	6
287	Electrolyte Sieving Chemistry in Suppressing Gas Evolution of Sodiumâ€Metal Batteries. Angewandte Chemie, 2022, 134, .	2.0	6
288	3D Hollow Sn@Carbon-Graphene Hybrid Material as Promising Anode for Lithium-Ion Batteries. Journal of Nanomaterials, 2014, 2014, 1-6.	2.7	5

#	Article	IF	CITATIONS
289	Biomass Carbonization: Biomass Organs Control the Porosity of Their Pyrolyzed Carbon (Adv. Funct.) Tj ETQq1 1	0.784314 14.9	rgBT /Over
290	Solution-based Preparation of High Sulfur Content Sulfur/Graphene Cathode Material for Li-S Battery. Chemical Research in Chinese Universities, 2021, 37, 323-327.	2.6	5
291	<scp>Lithiumâ€6ulfur</scp> Batteries at Extreme Temperatures: Challenges, Strategies and Prospects. Energy and Environmental Materials, 2023, 6, .	12.8	5
292	Ultrathin carbon nanotube–DNA hybrid membrane formation by simple physical adsorption onto a thin alumina substrate. Nanotechnology, 2010, 21, 285601.	2.6	4
293	Carbon: Two-Dimensional Porous Carbon: Synthesis and Ion-Transport Properties (Adv. Mater. 36/2015). Advanced Materials, 2015, 27, 5254-5254.	21.0	4
294	From Trash to Treasure: Turning Air Pollutants into Materials for Energy Storage. ChemNanoMat, 2017, 3, 392-400.	2.8	4
295	Cooling the Earth: a polymer-based selective thermal emitter for all-day radiative cooling. Science China Chemistry, 2021, 64, 339-340.	8.2	4
296	Square pulse generation from all-normal-dispersion graphene oxide mode-locked Yb-doped fiber laser. , 2013, , .		3
297	Graphene: Self-Assembly of Graphene Oxide at Interfaces (Adv. Mater. 32/2014). Advanced Materials, 2014, 26, 5732-5732.	21.0	3
298	Hydrogen Evolution: Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production (Adv. Funct. Mater. 44/2015). Advanced Functional Materials, 2015, 25, 6952-6952.	14.9	3
299	Advanced Nanomaterials for Energy-Related Applications. Journal of Nanomaterials, 2015, 2015, 1-2.	2.7	3
300	State Estimation for a Zero-Dimensional Electrochemical Model of Lithium-Sulfur Batteries. , 2021, , .		3
301	Regulating Liâ€ion Flux through a Dense yet Highly Ionic Conductive Interlayer for Stable Li Deposition. Advanced Materials Interfaces, 0, , 2200457.	3.7	3
302	Electrolytes: In Situ Synthesis of a Hierarchical All-Solid-State Electrolyte Based on Nitrile Materials for High-Performance Lithium-Ion Batteries (Adv. Energy Mater. 15/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	19.5	2
303	A new approach to produce polystyrene monoliths by gelation and capillary shrinkage. Science China Materials, 2021, 64, 2272-2279.	6.3	2
304	Microhoneycomb Monoliths Prepared by the Unidirectional Freeze-drying of Cellulose Nanofiber Based Sols: Method and Extensions. Journal of Visualized Experiments, 2018, , .	0.3	1
305	High-energy all-normal-dispersion graphene mode-locked Yb-doped fiber laser. , 2011, , .		0
306	Sub-100 ns pulses from a graphene passively Q-switched Yb-doped fiber laser. , 2011, , .		0

0

#	Article	IF	CITATIONS
307	Siliconâ€Sulfur Batteries: A Novel Lithiated Silicon–Sulfur Battery Exploiting an Optimized Solid‣ike Electrolyte to Enhance Safety and Cycle Life (Small 3/2017). Small, 2017, 13, .	10.0	0
308	Energy Storage: A Dual-Function Na2 SO4 Template Directed Formation of Cathode Materials with a High Content of Sulfur Nanodots for Lithium-Sulfur Batteries (Small 27/2017). Small, 2017, 13, .	10.0	0
309	Energy Storage: Disassembly–Reassembly Approach to RuO ₂ /Graphene Composites for Ultrahigh Volumetric Capacitance Supercapacitor (Small 30/2017). Small, 2017, 13, .	10.0	0
310	Sodium Ion Capacitors: The Interplay of Oxygen Functional Groups and Folded Texture in Densified Graphene Electrodes for Compact Sodium-Ion Capacitors (Adv. Energy Mater. 11/2018). Advanced Energy Materials, 2018, 8, 1870050.	19.5	0
311	An alternative means of advanced energy storage by electrochemical modification. JPhys Energy, 2020, 2, 021006.	5.3	0

312 Carbonaceous Electrode Materials., 2021,,.