Simon F Lacey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8561162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. New England Journal of Medicine, 2014, 371, 1507-1517.	13.9	4,444
2	Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Science Translational Medicine, 2015, 7, 303ra139.	5.8	1,402
3	Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas. New England Journal of Medicine, 2017, 377, 2545-2554.	13.9	1,390
4	Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 2020, 369, .	6.0	1,280
5	Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nature Medicine, 2018, 24, 563-571.	15.2	1,150
6	A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Science Translational Medicine, 2017, 9, .	5.8	1,116
7	Convergence of Acquired Mutations and Alternative Splicing of <i>CD19</i> Enables Resistance to CART-19 Immunotherapy. Cancer Discovery, 2015, 5, 1282-1295.	7.7	997
8	CRISPR-engineered T cells in patients with refractory cancer. Science, 2020, 367, .	6.0	872
9	Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia. Cancer Discovery, 2016, 6, 664-679.	7.7	811
10	NY-ESO-1–specific TCR–engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nature Medicine, 2015, 21, 914-921.	15.2	728
11	Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature, 2018, 558, 307-312.	13.7	574
12	B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma. Journal of Clinical Investigation, 2019, 129, 2210-2221.	3.9	513
13	Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma. New England Journal of Medicine, 2015, 373, 1040-1047.	13.9	511
14	Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nature Medicine, 2018, 24, 1499-1503.	15.2	459
15	Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight, 2018, 3, .	2.3	412
16	Dominant-Negative TGF-β Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation And Augments Prostate Cancer Eradication. Molecular Therapy, 2018, 26, 1855-1866.	3.7	406
17	PD-1 blockade modulates chimeric antigen receptor (CAR)–modified T cells: refueling the CAR. Blood, 2017, 129, 1039-1041.	0.6	393
18	lbrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood, 2016, 127, 1117-1127.	0.6	381

SIMON F LACEY

#	Article	IF	CITATIONS
19	Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature, 2022, 602, 503-509.	13.7	369
20	Activity of Mesothelin-Specific Chimeric Antigen Receptor T Cells Against Pancreatic Carcinoma Metastases in a Phase 1 Trial. Gastroenterology, 2018, 155, 29-32.	0.6	337
21	Safety and Efficacy of Intratumoral Injections of Chimeric Antigen Receptor (CAR) T Cells in Metastatic Breast Cancer. Cancer Immunology Research, 2017, 5, 1152-1161.	1.6	309
22	Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia. Blood, 2017, 130, 2317-2325.	0.6	273
23	Phase I Study of Lentiviral-Transduced Chimeric Antigen Receptor-Modified T Cells Recognizing Mesothelin in Advanced Solid Cancers. Molecular Therapy, 2019, 27, 1919-1929.	3.7	220
24	Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood, 2016, 128, 360-370.	0.6	190
25	Reducing <i>Ex Vivo</i> Culture Improves the Antileukemic Activity of Chimeric Antigen Receptor (CAR) T Cells. Cancer Immunology Research, 2018, 6, 1100-1109.	1.6	189
26	PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nature Medicine, 2022, 28, 724-734.	15.2	171
27	Optimizing Chimeric Antigen Receptor T-Cell Therapy for Adults With Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2020, 38, 415-422.	0.8	162
28	An NK-like CAR TÂcell transition in CAR TÂcell dysfunction. Cell, 2021, 184, 6081-6100.e26.	13.5	160
29	The Addition of the BTK Inhibitor Ibrutinib to Anti-CD19 Chimeric Antigen Receptor T Cells (CART19) Improves Responses against Mantle Cell Lymphoma. Clinical Cancer Research, 2016, 22, 2684-2696.	3.2	157
30	Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. Journal of Immunological Methods, 2016, 434, 1-8.	0.6	150
31	Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight, 2018, 3, .	2.3	140
32	Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor. PLoS Pathogens, 2017, 13, e1006613.	2.1	106
33	Long-Term Outcomes From a Randomized Dose Optimization Study of Chimeric Antigen Receptor Modified T Cells in Relapsed Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2020, 38, 2862-2871.	0.8	102
34	Sustained remissions with CD19-specific chimeric antigen receptor (CAR)-modified T cells in children with relapsed/refractory ALL Journal of Clinical Oncology, 2016, 34, 3011-3011.	0.8	98
35	Retroviral and Lentiviral Safety Analysis of Gene-Modified T Cell Products and Infused HIV and Oncology Patients. Molecular Therapy, 2018, 26, 269-279.	3.7	90
36	Long-term outcomes of a phase I study of agonist CD40 antibody and CTLA-4 blockade in patients with metastatic melanoma. Oncolmmunology, 2018, 7, e1468956.	2.1	88

SIMON F LACEY

#	Article	IF	CITATIONS
37	Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nature Medicine, 2021, 27, 842-850.	15.2	88
38	Neurotoxicity after CTL019 in a pediatric and young adult cohort. Annals of Neurology, 2018, 84, 537-546.	2.8	82
39	CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration. Journal of Clinical Investigation, 2019, 130, 673-685.	3.9	78
40	Pembrolizumab for B-cell lymphomas relapsing after or refractory to CD19-directed CAR T-cell therapy. Blood, 2022, 139, 1026-1038.	0.6	67
41	CAR T Cell Therapy of Non-hematopoietic Malignancies: Detours on the Road to Clinical Success. Frontiers in Immunology, 2018, 9, 2740.	2.2	58
42	CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication. Journal of Clinical Investigation, 2021, 131, .	3.9	52
43	BET bromodomain protein inhibition reverses chimeric antigen receptor extinction and reinvigorates exhausted T cells in chronic lymphocytic leukemia. Journal of Clinical Investigation, 2021, 131, .	3.9	45
44	Serial treatment of relapsed/refractory multiple myeloma with different BCMA-targeting therapies. Blood Advances, 2019, 3, 2487-2490.	2.5	35
45	Case Report: Prolonged Survival Following EGFRvIII CAR T Cell Treatment for Recurrent Glioblastoma. Frontiers in Oncology, 2021, 11, 669071.	1.3	34
46	Establishing a model system for evaluating CAR T cell therapy using dogs with spontaneous diffuse large B cell lymphoma. OncoImmunology, 2020, 9, 1676615.	2.1	33
47	Dual Targeting of Mesothelin and CD19 with Chimeric Antigen Receptor-Modified T Cells in Patients with Metastatic Pancreatic Cancer. Molecular Therapy, 2020, 28, 2367-2378.	3.7	32
48	Posterior Reversible Encephalopathy Syndrome (PRES) after Infusion of Anti-Bcma CAR T Cells (CART-BCMA) for Multiple Myeloma: Successful Treatment with Cyclophosphamide. Blood, 2016, 128, 5702-5702.	0.6	31
49	Diagnostic biomarkers to differentiate sepsis from cytokine release syndrome in critically ill children. Blood Advances, 2020, 4, 5174-5183.	2.5	30
50	Pilot Study of Anti-CD19 Chimeric Antigen Receptor T Cells (CTL019) in Conjunction with Salvage Autologous Stem Cell Transplantation for Advanced Multiple Myeloma. Blood, 2016, 128, 974-974.	0.6	28
51	First Trial of CRISPR-Edited T cells in Lung Cancer. Trends in Molecular Medicine, 2020, 26, 713-715.	3.5	20
52	Systemic Endothelial Activation Is Associated With Early Acute Respiratory Distress Syndrome in Children With Extrapulmonary Sepsis*. Critical Care Medicine, 2020, 48, 344-352.	0.4	20
53	Transdifferentiation of lymphoma into sarcoma associated with profound reprogramming of the epigenome. Blood, 2020, 136, 1980-1983.	0.6	19
54	Biomarkers of Response to Anti-CD19 Chimeric Antigen Receptor (CAR) T-Cell Therapy in Patients with Chronic Lymphocytic Leukemia. Blood, 2016, 128, 57-57.	0.6	18

SIMON F LACEY

#	Article	IF	CITATIONS
55	Pilot study of T cells redirected to EGFRvIII with a chimeric antigen receptor in patients with EGFRvIII+ glioblastoma Journal of Clinical Oncology, 2016, 34, 2067-2067.	0.8	17
56	Comprehensive Serum Proteome Profiling of Cytokine Release Syndrome and Immune Effector Cell–Associated Neurotoxicity Syndrome Patients with B-Cell ALL Receiving CAR T19. Clinical Cancer Research, 2022, 28, 3804-3813.	3.2	17
57	The Safety of Bridging Radiation with Anti-BCMA CAR T-Cell Therapy for Multiple Myeloma. Clinical Cancer Research, 2021, 27, 6580-6590.	3.2	15
58	Biomarkers in chimeric antigen receptor T-cell therapy. Biomarkers in Medicine, 2018, 12, 415-418.	0.6	14
59	Combination Anti-Bcma and Anti-CD19 CAR T Cells As Consolidation of Response to Prior Therapy in Multiple Myeloma. Blood, 2019, 134, 1863-1863.	0.6	13
60	IMCT-15PILOT STUDY OF T CELLS REDIRECTED TO EGFRVIII WITH A CHIMERIC ANTIGEN RECEPTOR IN PATIENTS WITH EGFRVIII+ GLIOBLASTOMA. Neuro-Oncology, 2015, 17, v110.4-v111.	0.6	10
61	First-in-Human Assessment of Feasibility and Safety of Multiplexed Genetic Engineering of Autologous T Cells Expressing NY-ESO -1 TCR and CRISPR/Cas9 Gene Edited to Eliminate Endogenous TCR and PD-1 (NYCE T cells) in Advanced Multiple Myeloma (MM) and Sarcoma. Blood, 2019, 134, 49-49.	0.6	10
62	PD1 Expression in EGFRvIII-Directed CAR T Cell Infusion Product for Glioblastoma Is Associated with Clinical Response. Frontiers in Immunology, 2022, 13, .	2.2	10
63	Stable HLA antibodies following sustained CD19+ cell depletion implicate a long-lived plasma cell source. Blood Advances, 2020, 4, 4292-4295.	2.5	9
64	Engineered T Cell Therapies from a Drug Development Viewpoint. Engineering, 2019, 5, 140-149.	3.2	8
65	Biomarkers in T-cell therapy clinical trials. Cytotherapy, 2013, 15, 632-640.	0.3	7
66	Bâ€cell maturation antigen chimeric antigen receptor Tâ€cell reâ€expansion in a patient with myeloma following salvage programmed cell death protein 1 inhibitorâ€based combination therapy. British Journal of Haematology, 2021, 193, 851-855.	1.2	6
67	Autologous CD4ÂT Lymphocytes Modified with a Tat-Dependent, Virus-Specific Endoribonuclease Gene in HIV-Infected Individuals, Molecular Therapy, 2021, 29, 626-635,	3.7	3