

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/856109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Annealing- and doping-free hole transport material for p-i-n perovskite solar cells with efficiency achieving over 21%. Chemical Engineering Journal, 2022, 433, 133265.	6.6	11
2	3,5-Difluorophenylboronic acid-modified SnO2 as ETLs for perovskite solar cells: PCEÂ>Â22.3%, T82Â>Â3000Âh. Chemical Engineering Journal, 2022, 433, 133744.	6.6	22
3	Reducing trap densities of perovskite films by the addition of hypoxanthine for high-performance and stable perovskite solar cells. Chemical Engineering Journal, 2022, 436, 135269.	6.6	17
4	Impact of Alkyl Chain Length on the Properties of Fluorenyl-Based Linear Hole-Transport Materials in <i>p-i-n</i> Perovskites Solar Cells. ACS Applied Energy Materials, 2022, 5, 7988-7996.	2.5	6
5	Conjugated copolymers as doping- and annealing-free hole transport materials for highly stable and efficient p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 2269-2275.	5.2	15
6	Zwitterions: promising interfacial/doping materials for organic/perovskite solar cells. New Journal of Chemistry, 2021, 45, 15118-15130.	1.4	15
7	Fluorinating Dopant-Free Small-Molecule Hole-Transport Material to Enhance the Photovoltaic Property. ACS Applied Materials & Interfaces, 2021, 13, 7705-7713.	4.0	25
8	Recent Progress in Perovskite Solar Cells Modified by Sulfur Compounds. Solar Rrl, 2021, 5, 2000713.	3.1	17
9	Mechanism of Enhancement in Perovskite Solar Cells by Organosulfur Amine Constructed 2D/3D Heterojunctions. Journal of Physical Chemistry C, 2021, 125, 16428-16434.	1.5	23
10	Preparation, structural and mechanical characterization of ceria-added phosphate glasses. Journal of Non-Crystalline Solids, 2021, 570, 120878.	1.5	7
11	Recent progress in metal sulfide-based electron transport layers in perovskite solar cells. Nanoscale, 2021, 13, 17272-17289.	2.8	10
12	Low-cost preparation and characterization of MgAl2O4 ceramics. Ceramics International, 2021, 48, 7316-7316.	2.3	4
13	Dramatic enhancement effects of l-cysteine on the degradation of sulfadiazine in Fe3+/CaO2 system. Journal of Hazardous Materials, 2020, 383, 121133.	6.5	76
14	Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: A critical review. Chemosphere, 2020, 241, 125043.	4.2	190
15	0D/2D plasmonic Cu2-xS/g-C3N4 nanosheets harnessing UV-vis-NIR broad spectrum for photocatalytic degradation of antibiotic pollutant. Applied Catalysis B: Environmental, 2020, 263, 118326.	10.8	100
16	A novel hollow-sphere cyclodextrin nanoreactor for the enhanced removal of bisphenol A under visible irradiation. Journal of Hazardous Materials, 2020, 384, 121267.	6.5	37
17	Dibenzo[<i>b</i> , <i>d</i>]thiopheneâ€Cored Holeâ€Transport Material with Passivation Effect Enabling the Highâ€Efficiency Planar p–i–n Perovskite Solar Cells with 83% Fill Factor. Solar Rrl, 2020, 4, 1900421.	3.1	47
18	A solvent-governed surface state strategy for rational synthesis of N and S co-doped carbon dots with multicolour fluorescence. Molecular Physics, 2020, 118, e1710609.	0.8	5

#	Article	IF	CITATIONS
19	Polydopamine modified cyclodextrin polymer as efficient adsorbent for removing cationic dyes and Cu2+. Journal of Hazardous Materials, 2020, 389, 121897.	6.5	144
20	Poly[2,7-(9,9-dihexylfluorene)]-block-poly[2-(dimethylamino)ethylmethacrylate] as resilient cathode interlayers in polymer solar cells: the effect of block ratios. Journal of Power Sources, 2020, 449, 227474.	4.0	5
21	High-efficiency planar p-i-n perovskite solar cells based on dopant-free dibenzo[b,d]furan-centred linear hole transporting material. Journal of Power Sources, 2020, 449, 227488.	4.0	18
22	Fe3O4/graphene aerogels: A stable and efficient persulfate activator for the rapid degradation of malachite green. Chemosphere, 2020, 251, 126402.	4.2	74
23	Accelerated photoelectron transmission by carboxymethyl β-cyclodextrin for organic contaminants removal: An alternative to noble metal catalyst. Journal of Hazardous Materials, 2020, 393, 122414.	6.5	30
24	Potassium-Ion Recovery with a Polypyrrole Membrane Electrode in Novel Redox Transistor Electrodialysis. Environmental Science & amp; Technology, 2020, 54, 4592-4600.	4.6	17
25	Enhanced removal of bisphenol A by cyclodextrin in photocatalytic systems: Degradation intermediates and toxicity evaluation. Chinese Chemical Letters, 2020, 31, 2623-2626.	4.8	84
26	Fullerene Derivative-Modified SnO ₂ Electron Transport Layer for Highly Efficient Perovskite Solar Cells with Efficiency over 21%. ACS Applied Materials & Interfaces, 2019, 11, 33825-33834.	4.0	73
27	Defect passivation by alcohol-soluble small molecules for efficient p–i–n planar perovskite solar cells with high open-circuit voltage. Journal of Materials Chemistry A, 2019, 7, 21140-21148.	5.2	58
28	Improve the crystallinity and morphology of perovskite films by suppressing the formation of intermediate phase of CH3NH3PbCl3. Organic Electronics, 2019, 68, 96-102.	1.4	9
29	Zwitterionic Polymer: A Facile Interfacial Material Works at Both Anode and Cathode in <i>pâ€iâ€n</i> Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900118.	3.1	24
30	Sintering mechanism of high-intensity and low-density ceramic proppants prepared by recycling of waste ceramic sands. Advances in Applied Ceramics, 2019, 118, 114-120.	0.6	7
31	High Efficiency Planar pâ€iâ€n Perovskite Solar Cells Using Lowâ€Cost Fluoreneâ€Based Hole Transporting Material. Advanced Functional Materials, 2019, 29, 1900484.	7.8	59
32	21.7% efficiency achieved in planar n–i–p perovskite solar cells <i>via</i> interface engineering with water-soluble 2D TiS ₂ . Journal of Materials Chemistry A, 2019, 7, 6213-6219.	5.2	87
33	Effect of Fullerene Volume Fraction on Twoâ€Dimensional Crystalâ€Constructed Supramolecular Liquid Crystals. Chemistry - an Asian Journal, 2019, 14, 125-129.	1.7	10
34	3,4-Dihydroxybenzhydrazide as an additive to improve the morphology of perovskite films for efficient and stable perovskite solar cells. Organic Electronics, 2019, 66, 47-52.	1.4	9
35	A Nonconjugated Zwitterionic Polymer: Cathode Interfacial Layer Comparable with PFN for Narrowâ€Bandgap Polymer Solar Cells. Macromolecular Rapid Communications, 2018, 39, e1700828.	2.0	14
36	Room-Temperature and Aqueous Solution-Processed Two-Dimensional TiS ₂ as an Electron Transport Layer for Highly Efficient and Stable Planar n–i–p Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 14796-14802.	4.0	49

#	Article	IF	CITATIONS
37	Spatial Modulation-Assisted Scanning White-Light Interferometry for Noise Suppression. IEEE Photonics Technology Letters, 2018, 30, 379-382.	1.3	4
38	Modulation of the Reduction Potential of TiO _{2–<i>x</i>} by Fluorination for Efficient and Selective CH ₄ Generation from CO ₂ Photoreduction. Nano Letters, 2018, 18, 3384-3390.	4.5	166
39	Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer. Organic Electronics, 2018, 52, 309-316.	1.4	22
40	Semi-transparent perovskite solar cells: unveiling the trade-off between transparency and efficiency. Journal of Materials Chemistry A, 2018, 6, 19696-19702.	5.2	95
41	Corrosion behaviors of the copper alloy electrodes in ArF excimer laser operation process. High Power Laser Science and Engineering, 2018, 6, .	2.0	3
42	Unique Supramolecular Liquidâ€Crystal Phases with Different Twoâ€Dimensional Crystal Layers. Angewandte Chemie, 2018, 130, 13642-13646.	1.6	2
43	Unique Supramolecular Liquid rystal Phases with Different Twoâ€Dimensional Crystal Layers. Angewandte Chemie - International Edition, 2018, 57, 13454-13458.	7.2	16
44	L-3, 4-dihydroxyphenylalanine and Dimethyl Sulfoxide Codoped PEDOT:PSS as a Hole Transfer Layer: towards High-Performance Planar <i>p</i> -i- <i>n</i> Perovskite Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 1264-1271.	2.2	1
45	Enhancement of the efficiency and stability of planar p-i-n perovskite solar cells via incorporation of an amine-modified fullerene derivative as a cathode buffer layer. Science China Chemistry, 2017, 60, 136-143.	4.2	25
46	Copper(II) chloride doped graphene oxides as efficient hole transport layer for high-performance polymer solar cells. Organic Electronics, 2017, 44, 176-182.	1.4	20
47	Ultra-broadband optical amplification at telecommunication wavelengths achieved by bismuth-activated lead iodide perovskites. Journal of Materials Chemistry C, 2017, 5, 2591-2596.	2.7	19
48	Towards a full understanding of regioisomer effects of indene-C ₆₀ bisadduct acceptors in bulk heterojunction polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 10206-10219.	5.2	31
49	Reduced {001}-TiO _{2â^'x} photocatalysts: noble-metal-free CO ₂ photoreduction for selective CH ₄ evolution. Physical Chemistry Chemical Physics, 2017, 19, 13875-13881.	1.3	50
50	Chemical Modification of <i>n</i> -Type-Material Naphthalene Diimide on ITO for Efficient and Stable Inverted Polymer Solar Cells. Langmuir, 2017, 33, 8679-8685.	1.6	11
51	A two-dimension-conjugated small molecule for efficient ternary organic solar cells. Organic Electronics, 2017, 48, 179-187.	1.4	15
52	Catechol derivatives as dopants in PEDOT:PSS to improve the performance of p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24275-24281.	5.2	37
53	<i>N</i> , <i>N</i> -Di- <i>para</i> -methylthiophenylamine-Substituted (2-Ethylhexyl)-9 <i>H</i> -Carbazole: A Simple, Dopant-Free Hole-Transporting Material for Planar Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 21821-21826.	1.5	29
54	Highly efficient and thickness-tolerable bulk heterojunction polymer solar cells based on P3HT donor and a low-bandgap non-fullerene acceptor. Journal of Power Sources, 2017, 364, 426-431.	4.0	9

#	Article	IF	CITATIONS
55	Comprehensive Study of Sol–Gel versus Hydrolysis–Condensation Methods To Prepare ZnO Films: Electron Transport Layers in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 26234-26241.	4.0	28
56	Diblock Copolymer PF-b-PDMAEMA as Effective Cathode Interfacial Material in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 42961-42968.	4.0	10
57	Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p–i–n Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 25323-25331.	4.0	115
58	Fullerenes and derivatives as electron transport materials in perovskite solar cells. Science China Chemistry, 2017, 60, 144-150.	4.2	28
59	Osmotic Power Generation with Positively and Negatively Charged 2D Nanofluidic Membrane Pairs. Advanced Functional Materials, 2017, 27, 1603623.	7.8	312
60	Fabrication of Micro-Optics Elements with Arbitrary Surface Profiles Based on One-Step Maskless Grayscale Lithography. Micromachines, 2017, 8, 314.	1.4	32
61	Topography Measurement of Large-Range Microstructures through Advanced Fourier-Transform Method and Phase Stitching in Scanning Broadband Light Interferometry. Micromachines, 2017, 8, 319.	1.4	3
62	Zwitter-Ionic Polymer Applied as Electron Transportation Layer for Improving the Performance of Polymer Solar Cells. Polymers, 2017, 9, 566.	2.0	9
63	Tuning Surface Energy of Conjugated Polymers via Fluorine Substitution of Side Alkyl Chains: Influence on Phase Separation of Thin Films and Performance of Polymer Solar Cells. ACS Omega, 2017, 2, 2489-2498.	1.6	25
64	Comprehensive Study of the Effect of DPE Additive on Photovoltaic Performance of 5,6-Difluoro-benzo[1,2,5]thiadiazole Based Donor-acceptor Copolymers. Acta Chimica Sinica, 2017, 75, 464.	0.5	9
65	Ultrabroad Photoluminescence and Electroluminescence at New Wavelengths from Doped Organometal Halide Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 2735-2741.	2.1	97
66	High quantum efficiency mid-wavelength interband cascade infrared photodetectors with one and two stages. Semiconductor Science and Technology, 2016, 31, 085005.	1.0	16
67	All polymer solar cells with diketopyrrolopyrrole-polymers as electron donor and a naphthalenediimide-polymer as electron acceptor. RSC Advances, 2016, 6, 35677-35683.	1.7	22
68	High operation temperature mid-wavelength interband cascade infrared photodetectors grown on InAs substrate. Proceedings of SPIE, 2016, , .	0.8	3
69	Perfluoroalkyl-substituted conjugated polymers as electron acceptors for all-polymer solar cells: the effect of diiodoperfluoroalkane additives. Journal of Materials Chemistry A, 2016, 4, 7736-7745.	5.2	31
70	Dihydrobenzofuran-C60 bisadducts as electron acceptors in polymer solar cells: Effect of alkyl substituents. Synthetic Metals, 2016, 215, 176-183.	2.1	5
71	Solvent-resistant ITO work function tuning by an acridine derivative enables high performance inverted polymer solar cells. Organic Electronics, 2016, 35, 6-11.	1.4	12
72	Broad-band plasmonic Cu-Au bimetallic nanoparticles for organic bulk heterojunction solar cells. Organic Electronics, 2016, 38, 213-221.	1.4	28

#	Article	IF	CITATIONS
73	Sulfur nanoparticles in situ growth on TiO ₂ mesoporous single crystals with enhanced solar light photocatalytic performance. RSC Advances, 2016, 6, 77863-77869.	1.7	17
74	Studies on different passivation on InAs/GaSb type-II superlattice photodetectors. Proceedings of SPIE, 2016, , .	0.8	1
75	Facilitating Electron Transportation in Perovskite Solar Cells via Water-Soluble Fullerenol Interlayers. ACS Applied Materials & Interfaces, 2016, 8, 18284-18291.	4.0	78
76	Optimized Model Surfaces for Advanced Atomic Force Microscopy Studies of Surface Nanobubbles. Langmuir, 2016, 32, 11179-11187.	1.6	8
77	Potassium-neutralized perylene derivative (K4PTC) and rGO-K4PTC composite as effective and inexpensive electron transport layers for polymer solar cells. Organic Electronics, 2016, 37, 47-54.	1.4	6
78	All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units. Journal of Materials Chemistry A, 2016, 4, 6056-6063.	5.2	49
79	Copolymers based on thiazolothiazole-dithienosilole as hole-transporting materials for high efficient perovskite solar cells. Organic Electronics, 2016, 33, 142-149.	1.4	29
80	Easily accessible polymer additives for tuning the crystal-growth of perovskite thin-films for highly efficient solar cells. Nanoscale, 2016, 8, 5552-5558.	2.8	83
81	Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 5890-5897.	5.2	219
82	InAs-based type-II superlattice long wavelength photodetectors. Proceedings of SPIE, 2016, , .	0.8	4
83	Graphene modified mesoporous titania single crystals with controlled and selective photoredox surfaces. Chemical Communications, 2016, 52, 1689-1692.	2.2	45
84	Room-temperature mixed-solvent-vapor annealing for high performance perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 321-326.	5.2	96
85	Enhanced photocatalytic activities of vacuum activated TiO2 catalysts with Ti3+ and N co-doped. Catalysis Today, 2016, 266, 188-196.	2.2	61
86	Vacuum activation-induced Ti3+ and carbon co-doped TiO2 with enhanced solar light photo-catalytic activity. Research on Chemical Intermediates, 2016, 42, 4181-4189.	1.3	21
87	Moiré-Based Interferometry for Magnification Calibration of Bitelecentric Lens System. IEEE Photonics Journal, 2015, 7, 1-11.	1.0	1
88	InAs-based InAs/GaAsSb type-II superlattices: Growth and characterization. Journal of Crystal Growth, 2015, 416, 130-133.	0.7	13
89	A facile approach to further improve the substitution of nitrogen into reduced TiO2â^' with an enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2015, 170-171, 66-73.	10.8	64
90	Triple Cathode Buffer Layers Composed of PCBM, C ₆₀ , and LiF for High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 6230-6237.	4.0	136

#	Article	IF	CITATIONS
91	Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis. Scientific Reports, 2015, 5, 8591.	1.6	235
92	Studies on abrupt and gradual band gap hole barriers in InAs/GaSb superlattice long wavelength photodetectors. , 2015, , .		0
93	Efficiency enhancement from [60]fulleropyrrolidine-based polymer solar cells through N-substitution manipulation. Carbon, 2015, 92, 185-192.	5.4	10
94	High performance InAs/GaSb superlattice long wavelength photodetectors based on barrier enhanced structures. Proceedings of SPIE, 2015, , .	0.8	0
95	Crown-ether functionalized fullerene as a solution-processable cathode buffer layer for high performance perovskite and polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 9278-9284.	5.2	61
96	High performance planar <i>p-i-n</i> perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers. Applied Physics Letters, 2015, 107, .	1.5	42
97	Effect of PEI cathode interlayer on work function and interface resistance of ITO electrode in the inverted polymer solar cells. Organic Electronics, 2015, 17, 94-101.	1.4	76
98	Concentration-dependent and light-responsive self-assembly of bolaamphiphiles bearing α-cyanostilbene based photochromophore. Soft Matter, 2015, 11, 798-805.	1.2	27
99	Lowering the Work Function of ITO by Covalent Surface Grafting of Aziridine: Application in Inverted Polymer Solar Cells. Advanced Materials Interfaces, 2015, 2, 1400397.	1.9	18
100	Evolution of interfacial properties with annealing in InAs/GaSb superlattice probed by infrared photoluminescence. Japanese Journal of Applied Physics, 2014, 53, 082201.	0.8	15
101	Improved PID algorithms with application to excimer laser temperature control. , 2014, , .		2
102	Conjugated polymers with polar side chains in bulk heterojunction solar cell devices. Polymer International, 2014, 63, 22-30.	1.6	9
103	Molecular beam epitaxy growth of high quality InAs/GaSb type-II superlattices for long wavelength infrared detection. , 2014, , .		0
104	Interface layer control and optimization of InAs/GaSb type-II superlattices grown by molecular beam epitaxy. Journal of Crystal Growth, 2014, 386, 220-225.	0.7	14
105	High quality mid-wavelength infrared InAs/GaSb superlattices by exploring the optimum molecular beam epitaxy growth process. Infrared Physics and Technology, 2014, 67, 8-13.	1.3	0
106	Interface design and properties in InAs/GaSb type-II superlattices grown by molecular beam epitaxy. Proceedings of SPIE, 2013, , .	0.8	0
107	InAs/GaSb type-II superlattice mid-wavelength infrared focal plane array detectors grown by molecular beam epitaxy. Journal of Crystal Growth, 2013, 378, 596-599.	0.7	14
108	Fabrication and characterization of InAs/GaSb strained layer superlattice infrared focal plane array detectors. , 2013, , .		1

#	Article	IF	CITATIONS
109	Dark current analysis of long wavelength InAs/GaSb superlattice infrared detector. , 2012, , .		1
110	The accurate measurement of background carrier concentration in short-period longwave InAs/GaSb superlattices on GaSb substrate. , 2012, , .		0
111	Studies on InAs/GaSb superlattice structural properties by high resolution x-ray diffraction. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 051203.	0.6	14
112	X-ray diffraction analysis of high quality InAs/GaSb Type II superlattices grown by MBE. , 2011, , .		1
113	Growth and fabrication of InAs/GaSb type II superlattice mid-wavelength infrared photodetectors. Nanoscale Research Letters, 2011, 6, 635.	3.1	11
114	The Effect of additive on performance and shelf-stability of HSX-1/PCBM photovoltaic devices. Organic Electronics, 2011, 12, 1544-1551.	1.4	58
115	Synthesis of Sb ₂ E ₃ (E = S, Se) Nanorods with a Flat Cross Section by a Rapid Hot Injection Method. Journal of Nanoscience and Nanotechnology, 2010, 10, 7778-7782.	0.9	2
116	Low bandgap polymers synthesized by FeCl3 oxidative polymerization. Solar Energy Materials and Solar Cells, 2010, 94, 1275-1281.	3.0	56
117	Synthesis and characterization of red-emission PPV copolymers containing fluorenone unit. Central South University, 2010, 17, 269-276.	0.5	1
118	Black Polymers in Bulk-Heterojunction Solar Cells. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1565-1572.	1.9	11
119	Influence of Molecular Weight on the Performance of Organic Solar Cells Based on a Fluorene Derivative. Advanced Functional Materials, 2010, 20, 2124-2131.	7.8	124
120	Tailoring side chains of low band gap polymers for high efficiency polymer solar cells. Polymer, 2010, 51, 3031-3038.	1.8	90
121	Poly(4,8â€bis(2â€ethylhexyloxy)benzo[1,2â€b:4,5â€b′]dithiophene vinylene): Synthesis, optical and photovolt properties. Journal of Polymer Science Part A, 2010, 48, 1822-1829.	taic 2.5	31
122	Solution-Processable Organic Molecule with Triphenylamine Core and Two Benzothiadiazole-Thiophene Arms for Photovoltaic Application. Journal of Physical Chemistry C, 2010, 114, 3701-3706.	1.5	97
123	Synthesis and characterization of three small band gap conjugated polymers for solar cell applications. Polymer Chemistry, 2010, 1, 1272.	1.9	18
124	Observation of a Charge Transfer State in Lowâ€Bandgap Polymer/Fullerene Blend Systems by Photoluminescence and Electroluminescence Studies. Advanced Functional Materials, 2009, 19, 3293-3299.	7.8	71
125	Electroluminescent fluoreneâ€based alternating polymers bearing triarylamine or carbazole moieties in the main chain: Synthesis and properties. Journal of Applied Polymer Science, 2009, 111, 978-987.	1.3	6
126	Solution-Processable Gradient Red-Emitting ï€-Conjugated Dendrimers Based on Benzothiadiazole as Core: Synthesis, Characterization, and Device Performances. Journal of Organic Chemistry, 2009, 74, 7449-7456.	1.7	62

#	Article	IF	CITATIONS
127	Improvement of Photoluminescent and Photovoltaic Properties of Poly(thienylene vinylene) by Carboxylate Substitution. Macromolecules, 2009, 42, 4377-4380.	2.2	85
128	Tuning Work Function of Noble Metals As Promising Cathodes in Organic Electronic Devices. Chemistry of Materials, 2009, 21, 2798-2802.	3.2	21
129	Benzothiadiazole-Based Linear and Star Molecules: Design, Synthesis, and Their Application in Bulk Heterojunction Organic Solar Cells. Chemistry of Materials, 2009, 21, 5327-5334.	3.2	137
130	Alternating copolymers of fluorene and donor–acceptor–donor segments designed for miscibility in bulk heterojunction photovoltaics. Journal of Materials Chemistry, 2009, 19, 5359.	6.7	28
131	Solution-Processable Red-Emission Organic Materials Containing Triphenylamine and Benzothiodiazole Units: Synthesis and Applications in Organic Light-Emitting Diodes. Journal of Physical Chemistry B, 2009, 113, 7745-7752.	1.2	63
132	Novel twoâ€dimensional donor–acceptor conjugated polymers containing quinoxaline units: Synthesis, characterization, and photovoltaic properties. Journal of Polymer Science Part A, 2008, 46, 4038-4049.	2.5	69
133	Synthesis and Absorption Spectra of nâ€Type Conjugated Polymers Based on Perylene Diimide. Macromolecular Rapid Communications, 2008, 29, 1444-1448.	2.0	43
134	Branched poly(<i>p</i> â€phenylenevinylene): Synthesis, optical and electrochemical properties. Journal of Applied Polymer Science, 2008, 110, 1002-1008.	1.3	4
135	Binaphthylâ€Containing Green―and Redâ€Emitting Molecules for Solutionâ€Processable Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2008, 18, 3299-3306.	7.8	108
136	Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS ₂ Nanocrystals. Chemistry of Materials, 2008, 20, 6434-6443.	3.2	519
137	Synthesis of In2 S3 Nanoplates and Their Self-Assembly into Superlattices. Journal of Nanoscience and Nanotechnology, 2007, 7, 4346-4352.	0.9	10
138	Synthesis of Type II CdTeâ^'CdSe Nanocrystal Heterostructured Multiple-Branched Rods and Their Photovoltaic Applications. Journal of Physical Chemistry C, 2007, 111, 6538-6543.	1.5	155
139	Double-Layer Structured WPLEDs Based on Three Primary RGB Luminescent Polymers:  Toward High Luminous Efficiency, Color Purity, and Stability. Journal of Physical Chemistry C, 2007, 111, 6862-6867.	1.5	36
140	Monodispersed ZnSe Colloidal Microspheres:  Preparation, Characterization, and Their 2D Arrays. Langmuir, 2007, 23, 9008-9013.	1.6	38
141	A facile route to synthesize chalcopyrite CuInSe2nanocrystals in non-coordinating solvent. Nanotechnology, 2007, 18, 025602.	1.3	113
142	Poly(quinoxaline vinylene) With Conjugated Phenylenevinylene Side Chain: A Potential Polymer Acceptor With Broad Absorption Band. Macromolecular Chemistry and Physics, 2007, 208, 1294-1300.	1.1	13
143	Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1â^'xnanocrystals. Nanotechnology, 2006, 17, 4041-4047	1.3	158
144	Thinner-film plastic photovoltaic cells based on different C60 derivatives. Polymers for Advanced Technologies, 2006, 17, 500-505.	1.6	11

#	Article	IF	CITATIONS
145	High-Yield Fabrication and Electrochemical Characterization of Tetrapodal CdSe, CdTe, and CdSexTe1–x Nanocrystals. Advanced Functional Materials, 2006, 16, 1705-1716.	7.8	212
146	Controlled synthesis of 3D nanostructured Cd4Cl3(OH)5templates and their transformation into Cd(OH)2and CdS nanomaterials. Nanotechnology, 2006, 17, 772-777.	1.3	34