
Ming Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8560624/publications.pdf Version: 2024-02-01

MING KONG

#	Article	IF	CITATIONS
1	V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO. Chemical Engineering Journal, 2019, 370, 810-821.	12.7	207
2	Iron doped effects on active sites formation over activated carbon supported Mn-Ce oxide catalysts for low-temperature SCR of NO. Chemical Engineering Journal, 2020, 379, 122398.	12.7	195
3	In situ IR comparative study on N2O formation pathways over different valence states manganese oxides catalysts during NH3–SCR of NO. Chemical Engineering Journal, 2020, 397, 125446.	12.7	131
4	Effect of different potassium species on the deactivation of V2O5-WO3/TiO2 SCR catalyst: Comparison of K2SO4, KCl and K2O. Chemical Engineering Journal, 2018, 348, 637-643.	12.7	98
5	Performance impact and poisoning mechanism of arsenic over commercial V2O5–WO3/TiO2 SCR catalyst. Catalysis Communications, 2015, 72, 121-126.	3.3	89
6	Promotional effects of nitrogen doping on catalytic performance over manganese-containing semi-coke catalysts for the NH3-SCR at low temperatures. Journal of Hazardous Materials, 2020, 387, 121704.	12.4	65
7	Role of cerium in improving NO reduction with NH 3 over Mn–Ce/ASC catalyst in low-temperature flue gas. Chemical Engineering Research and Design, 2018, 133, 1-10.	5.6	63
8	K+ deactivation of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO with NH3: Effect of vanadium content. Chemical Engineering Journal, 2019, 370, 518-526.	12.7	63
9	Synergy of KCl and Hgel on selective catalytic reduction of NO with NH3 over V2O5–WO3/TiO2 catalysts. Chemical Engineering Journal, 2015, 264, 815-823.	12.7	55
10	Poisoning effects of KCl and As2O3 on selective catalytic reduction of NO with NH3 over Mn-Ce/AC catalysts at low temperature. Chemical Engineering Journal, 2018, 351, 540-547.	12.7	55
11	Selection of carbon materials and modification methods in low-temperature sintering flue gas denitrification. Chemical Engineering Research and Design, 2017, 126, 278-285.	5.6	50
12	Low-temperature SCR of NO with NH3 over biomass char supported highly dispersed Mn Ce mixed oxides. Journal of the Energy Institute, 2019, 92, 883-891.	5.3	48
13	Promotional effect of Ce on the SCR of NO with NH3 at low temperature over MnO x supported by nitric acid-modified activated carbon. Research on Chemical Intermediates, 2018, 44, 1729-1744.	2.7	43
14	Insight into N2O Formation Over Different Crystal Phases of MnO2 During Low-Temperature NH3–SCR of NO. Catalysis Letters, 2021, 151, 2964-2971.	2.6	38
15	Influence of phosphorus on the NH3-SCR performance of CeO2-TiO2 catalyst for NO removal from co-incineration flue gas of domestic waste and municipal sludge. Journal of Colloid and Interface Science, 2022, 610, 463-473.	9.4	38
16	Effect of Ce doping on the resistance of Na over V2O5-WO3/TiO2 SCR catalysts. Materials Research Bulletin, 2018, 104, 112-118.	5.2	35
17	Low-temperature flue gas denitration with transition metal oxides supported on biomass char. Journal of the Energy Institute, 2019, 92, 1158-1166.	5.3	30
18	Effect of Interphase Forces on Gas–Liquid Multiphase Flow in RH Degasser. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 2620-2630.	2.1	28

Ming Kong

#	Article	IF	CITATIONS
19	Insight into regeneration mechanism with sulfuric acid for arsenic poisoned commercial SCR catalyst. Journal of the Energy Institute, 2020, 93, 387-394.	5.3	28
20	Physicochemical properties of pine-derived bio-chars modified by metal oxides and their performance in the removal of NO. Journal of the Energy Institute, 2018, 91, 467-472.	5.3	19
21	New insights into the deactivation mechanism of V ₂ O ₅ -WO ₃ /TiO ₂ catalyst during selective catalytic reduction of NO with NH ₃ : synergies between arsenic and potassium species. RSC Advances. 2019. 9. 37724-37732.	3.6	19
22	Synergistic effect of arsenic and different potassium species on V2O5-WO3/TiO2 catalyst poisoning: Comparison of Clâ^', SO42â^' and NO3â^' anions. Catalysis Communications, 2020, 144, 106069.	3.3	18
23	Efficient MnO -CeO2/Ti-bearing blast furnace slag catalyst for NH3-SCR of NO at low temperature: Study of support treating and Mn/Ce ratio. Journal of Environmental Chemical Engineering, 2022, 10, 108238.	6.7	18
24	Sintering flue gas desulfurization with different carbon materials modified by microwave irradiation. Journal of Iron and Steel Research International, 2017, 24, 979-984.	2.8	15
25	Comparative Studies of Effects of Vapor- and Liquid-Phase As ₂ O ₃ on Catalytic Behaviors of V ₂ O ₅ â€"WO ₃ /TiO ₂ Catalysts for NH ₃ -SCR. ACS Omega, 2020, 5, 24195-24203.	3.5	15
26	Property influence and poisoning mechanism of HgCl2 on V2O5-WO3/TiO2 SCR-DeNO catalysts. Catalysis Communications, 2016, 85, 34-38.	3.3	13
27	Separating Sulfur from Fuel Gas Desulfurization Gypsum with an Oxalic Acid Solution. ACS Omega, 2020, 5, 16932-16939.	3.5	5
28	Deactivation mechanisms of MnO -CeO2/Ti-bearing blast furnace slag low-temperature SCR catalyst by PbO and PbCl2. Molecular Catalysis, 2022, 521, 112209.	2.0	4
29	<i>In situ</i> observations of isothermal cuspidine crystallization in molten mould fluxes with varying basicity. Ironmaking and Steelmaking, 2021, 48, 149-154.	2.1	2