
Nurit Ashkenasy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8560568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modular modification of the two-dimensional electronic properties of graphene by bio-inspired functionalization. Applied Surface Science, 2022, 574, 151642.	6.1	3
2	Dynamic Surface Layer Coiled Coil Proteins Processing Analog-to-Digital Information. Journal of the American Chemical Society, 2021, 143, 17441-17451.	13.7	6
3	Mechanism of Side Chain-Controlled Proton Conductivity in Bioinspired Peptidic Nanostructures. Journal of Physical Chemistry B, 2021, 125, 12741-12752.	2.6	3
4	Protonâ€Conductive Melaninâ€Like Fibers through Enzymatic Oxidation of a Selfâ€Assembling Peptide. Advanced Materials, 2020, 32, e2003511.	21.0	38
5	The role of CdS doping in improving SWIR photovoltaic and photoconductive responses in solution grown CdS/PbS heterojunctions. Nanotechnology, 2020, 31, 255502.	2.6	4
6	Catalytic and Electron Conducting Carbon Nanotube–Reinforced Lysozyme Crystals. Advanced Functional Materials, 2019, 29, 1807351.	14.9	25
7	Self-Assembled Peptide Nanotube Films with High Proton Conductivity. Journal of Physical Chemistry B, 2019, 123, 9882-9888.	2.6	10
8	Systematic modification of the indium tin oxide work function <i>via</i> side-chain modulation of an amino-acid functionalization layer. Physical Chemistry Chemical Physics, 2019, 21, 21875-21881.	2.8	6
9	Measuring Proton Currents of Bioinspired Materials with Metallic Contacts. ACS Applied Materials & Interfaces, 2018, 10, 1933-1938.	8.0	17
10	Photoconductance of ITO/Conductive Polymer Junctions in the UV and Visible Ranges. Journal of Physical Chemistry C, 2018, 122, 7288-7295.	3.1	4
11	Tailorâ€Made Functional Peptide Selfâ€Assembling Nanostructures. Advanced Materials, 2018, 30, e1707083.	21.0	104
12	Significant Enhancement of Proton Transport in Bioinspired Peptide Fibrils by Single Acidic or Basic Amino Acid Mutation. Advanced Functional Materials, 2017, 27, 1604624.	14.9	38
13	Peptide-functionalized semiconductor surfaces: strong surface electronic effects from minor alterations to backbone composition. Physical Chemistry Chemical Physics, 2017, 19, 5709-5714.	2.8	9
14	The Strong Influence of Structure Polymorphism on the Conductivity of Peptide Fibrils. Angewandte Chemie - International Edition, 2016, 55, 9988-9992.	13.8	44
15	The Strong Influence of Structure Polymorphism on the Conductivity of Peptide Fibrils. Angewandte Chemie, 2016, 128, 10142-10146.	2.0	9
16	Filling the Green Gap of a Megadalton Photosystem I Complex by Conjugation of Organic Dyes. Bioconjugate Chemistry, 2016, 27, 36-41.	3.6	14
17	Sequence dependent proton conduction in self-assembled peptide nanostructures. Nanoscale, 2016, 8, 2358-2366.	5.6	44
18	Fabrication of nanopores in multi-layered silicon-based membranes using focused electron beam induced etching with XeF2 gas. Mikrochimica Acta, 2016, 183, 987-994.	5.0	10

NURIT ASHKENASY

#	Article	IF	CITATIONS
19	Functional Peptide and Protein Nanostructures. Israel Journal of Chemistry, 2015, 55, 621-621.	2.3	1
20	Influence of Solvent in Controlling Peptide–Surface Interactions. Journal of Physical Chemistry Letters, 2015, 6, 3944-3949.	4.6	19
21	Hybrid Proton and Electron Transport in Peptide Fibrils. Advanced Functional Materials, 2014, 24, 5873-5880.	14.9	58
22	Electronic Properties of Amyloid βâ€Based Peptide Filaments with Different Nonâ€Natural Heterocyclic Side Chains. Israel Journal of Chemistry, 2014, 54, 703-707.	2.3	15
23	Amplification of Single Molecule Translocation Signal Using β-Strand Peptide Functionalized Nanopores. ACS Nano, 2014, 8, 6822-6832.	14.6	24
24	Introducing charge transfer functionality into prebiotically relevant Î ² -sheet peptide fibrils. Chemical Communications, 2014, 50, 6733.	4.1	35
25	Force modulated conductance of artificial coiledâ€coil protein monolayers. Biopolymers, 2013, 100, 93-99.	2.4	11
26	Conductance of amyloid β based peptide filaments: structure–function relations. Soft Matter, 2012, 8, 8690.	2.7	49
27	Transient Fibril Structures Facilitating Nonenzymatic Self-Replication. ACS Nano, 2012, 6, 7893-7901.	14.6	79
28	Porphyrins as ITO photosensitizers: substituents control photo-induced electron transfer direction. Journal of Materials Chemistry, 2012, 22, 20334.	6.7	19
29	Charge transport in vertically aligned, self-assembled peptidenanotube junctions. Nanoscale, 2012, 4, 518-524.	5.6	58
30	Modulating Semiconductor Surface Electronic Properties by Inorganic Peptide–Binders Sequence Design. Journal of the American Chemical Society, 2012, 134, 20403-20411.	13.7	14
31	Complex investigation of electronic structure transformations in Lead Sulphide nanoparticles using a set of electron spectroscopy techniques. Vacuum, 2012, 86, 638-642.	3.5	3
32	Surface Termination Control in Chemically Deposited PbS Films: Nucleation and Growth on GaAs(111)A and GaAs(111)B. Journal of Physical Chemistry C, 2011, 115, 16501-16508.	3.1	21
33	Peptide directed growth of gold films. Journal of Materials Chemistry, 2011, 21, 968-974.	6.7	15
34	Building Logic into Peptide Networks: Bottomâ€Up and Topâ€Down. Israel Journal of Chemistry, 2011, 51, 106-117.	2.3	49
35	Self-assembly and Self-replication of Short Amphiphilic Î ² -sheet Peptides. Origins of Life and Evolution of Biospheres, 2011, 41, 563-567.	1.9	20
36	Controlling Fieldâ€Effect Transistor Biosensor Electrical Characteristics Using Immunosorbent Assay. Electroanalysis, 2011, 23, 2327-2334.	2.9	2

NURIT ASHKENASY

#	Article	IF	CITATIONS
37	Effects of electrons on the shape of nanopores prepared by focused electron beam induced etching. Nanotechnology, 2011, 22, 285303.	2.6	13
38	De Novo Designed Coiled-Coil Proteins with Variable Conformations as Components of Molecular Electronic Devices. Journal of the American Chemical Society, 2010, 132, 5070-5076.	13.7	51
39	Bioassisted multi-nanoparticle patterning using single-layer peptide templates. Nanotechnology, 2010, 21, 145305.	2.6	23
40	Reconstructing solid state nanopore shape from electrical measurements. Applied Physics Letters, 2010, 97, .	3.3	27
41	Electrical Performance of Silicon-on-Insulator Field-Effect Transistors with Multiple Top-Gate Organic Layers in Electrolyte Solution. ACS Nano, 2010, 4, 4601-4608.	14.6	23
42	The controlled fabrication of nanopores by focused electron-beam-induced etching. Nanotechnology, 2009, 20, 245302.	2.6	43
43	Design of Self-Assembling Peptide Nanotubes with Delocalized Electronic States. Small, 2006, 2, 99-102.	10.0	189
44	Recognizing a Single Base in an Individual DNA Strand: A Step Toward DNA Sequencing in Nanopores. Angewandte Chemie - International Edition, 2005, 44, 1401-1404.	13.8	181
45	Recognizing a Single Base in an Individual DNA Strand: A Step Toward DNA Sequencing in Nanopores. Angewandte Chemie, 2005, 117, 1425-1428.	2.0	37
46	Modulating Charge Transfer through CyclicD,L-?-Peptide Self-Assembly. Chemistry - A European Journal, 2005, 11, 1137-1144.	3.3	116
47	Electronic and transport properties of reduced and oxidized nanocrystalline TiO2 films. Applied Physics Letters, 2003, 82, 574-576.	3.3	64
48	Quantitative evaluation of chemisorption processes on semiconductors. Journal of Applied Physics, 2002, 92, 7090-7097.	2.5	64
49	STM/AFM studies of the evolution of morphology of electroplated Ni/W alloys. Applied Surface Science, 2002, 200, 1-14.	6.1	77
50	Characterization of quantum well structures using surface photovoltage spectroscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 74, 125-132.	3.5	7
51	Characterization methodology for pseudomorphic high electron mobility transistors using surface photovoltage spectroscopy. Journal of Applied Physics, 2000, 88, 6775-6780.	2.5	8
52	GaAs/AlGaAs single quantum well p-i-n structures: A surface photovoltage study. Journal of Applied Physics, 1999, 86, 6902-6907.	2.5	11
53	Surface photovoltage spectroscopy of an InGaAs/GaAs/AlGaAs single quantum well laser structure. Journal of Applied Physics, 1998, 83, 1146-1149.	2.5	23