Walid Azab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8560471/publications.pdf

Version: 2024-02-01

434195 394421 1,118 52 19 31 citations h-index g-index papers 56 56 56 1501 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The US3 Kinase of Herpes Simplex Virus Phosphorylates the RNA Sensor RIG-I To Suppress Innate Immunity. Journal of Virology, 2022, 96, JVI0151021.	3.4	8
2	Equine Herpesviruses (Herpesviridae)., 2021,, 278-286.		1
3	Immunogenicity of Calvenza-03 EIV/EHV® Vaccine in Horses: Comparative In Vivo Study. Vaccines, 2021, 9, 166.	4.4	5
4	Grapheneâ€Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions. Advanced Functional Materials, 2021, 31, 2009003.	14.9	9
5	Seasonal host and ecological drivers may promote restricted water as a viral vector. Science of the Total Environment, 2021, 773, 145446.	8.0	4
6	Equine Herpesvirus Type 4 (EHV-4) Outbreak in Germany: Virological, Serological, and Molecular Investigations. Pathogens, 2021, 10, 810.	2.8	10
7	Equid Herpesvirus-1 Exploits the Extracellular Matrix of Mononuclear Cells to Ensure Transport to Target Cells. IScience, 2020, 23, 101615.	4.1	4
8	Equine Alphaherpesviruses Require Activation of the Small GTPases Rac1 and Cdc42 for Intracellular Transport. Microorganisms, 2020, 8, 1013.	3.6	7
9	Equine Herpesvirus Type 1 Modulates Cytokine and Chemokine Profiles of Mononuclear Cells for Efficient Dissemination to Target Organs. Viruses, 2020, 12, 999.	3.3	11
10	Macropinocytosis and Clathrin-Dependent Endocytosis Play Pivotal Roles for the Infectious Entry of Puumala Virus. Journal of Virology, 2020, 94, .	3.4	14
11	Differentially-Charged Liposomes Interact with Alphaherpesviruses and Interfere with Virus Entry. Pathogens, 2020, 9, 359.	2.8	8
12	Bearing the brunt: Mongolian khulan (Equus hemionus hemionus) are exposed to multiple influenza A strains. Veterinary Microbiology, 2020, 242, 108605.	1.9	4
13	EHV-1 Pathogenesis: Current in vitro Models and Future Perspectives. Frontiers in Veterinary Science, 2019, 6, 251.	2.2	5
14	Functionalized nanographene sheets with high antiviral activity through synergistic electrostatic and hydrophobic interactions. Nanoscale, 2019, 11, 15804-15809.	5.6	83
15	Detection of equid herpesviruses among different Arabian horse populations in Egypt. Veterinary Medicine and Science, 2019, 5, 361-371.	1.6	12
16	Fatal Elephant Endotheliotropic Herpesvirus Infection of Two Young Asian Elephants. Microorganisms, 2019, 7, 396.	3.6	12
17	Equine Herpesvirus 1 Bridles T Lymphocytes To Reach Its Target Organs. Journal of Virology, 2019, 93, .	3.4	20
18	Subclinical infection of a young captive Asian elephant with elephant endotheliotropic herpesvirus 1. Archives of Virology, 2018, 163, 495-500.	2.1	10

#	Article	IF	Citations
19	Novel Divergent Polar Bear-Associated Mastadenovirus Recovered from a Deceased Juvenile Polar Bear. MSphere, 2018, 3, .	2.9	8
20	How Host Specific Are Herpesviruses? Lessons from Herpesviruses Infecting Wild and Endangered Mammals. Annual Review of Virology, 2018, 5, 53-68.	6.7	52
21	Physiological costs of infection: herpesvirus replication is linked to blood oxidative stress in equids. Scientific Reports, 2018, 8, 10347.	3.3	16
22	Multivalent Flexible Nanogels Exhibit Broad-Spectrum Antiviral Activity by Blocking Virus Entry. ACS Nano, 2018, 12, 6429-6442.	14.6	106
23	Size-dependent inhibition of herpesvirus cellular entry by polyvalent nanoarchitectures. Nanoscale, 2017, 9, 3774-3783.	5.6	70
24	Initial Contact: The First Steps in Herpesvirus Entry. Advances in Anatomy, Embryology and Cell Biology, 2017, 223, 1-27.	1.6	22
25	Viral genes and cellular markers associated with neurological complications during herpesvirus infections. Journal of General Virology, 2017, 98, 1439-1454.	2.9	32
26	The Role of the Equine Herpesvirus Type 1 (EHV-1) US3-Encoded Protein Kinase in Actin Reorganization and Nuclear Egress. Viruses, 2016, 8, 275.	3.3	12
27	Evaluation of immunity and clinical disease following infection of horses with Equine herpesvirus-1 and mutants of differing neuropathogenic potential. Journal of Equine Veterinary Science, 2016, 39, S26-S27.	0.9	0
28	Glycoprotein B of equine herpesvirus type 1 has two recognition sites for subtilisin-like proteases that are cleaved by furin. Journal of General Virology, 2016, 97, 1218-1228.	2.9	4
29	Well-known surface and extracellular antigens of pathogenic microorganisms among the immunodominant proteins of the infectious microalgae Prototheca zopfii. Frontiers in Cellular and Infection Microbiology, 2015, 5, 67.	3.9	32
30	Comparative Analysis of Glycoprotein B (gB) of Equine Herpesvirus Type 1 and Type 4 (EHV-1 and EHV-4) in Cellular Tropism and Cell-to-Cell Transmission. Viruses, 2015, 7, 522-542.	3.3	12
31	Binding of Alphaherpesvirus Glycoprotein H to Surface \hat{l}_{\pm} ₄ \hat{l}^{2} ₁ -Integrins Activates Calcium-Signaling Pathways and Induces Phosphatidylserine Exposure on the Plasma Membrane. MBio, 2015, 6, e01552-15.	4.1	28
32	Role of gB and pUS3 in Equine Herpesvirus 1 Transfer between Peripheral Blood Mononuclear Cells and Endothelial Cells: a Dynamic <i>In Vitro</i> Model. Journal of Virology, 2015, 89, 11899-11908.	3.4	18
33	Equid herpesvirus type 4 uses a restricted set of equine major histocompatibility complex class I proteins as entry receptors. Journal of General Virology, 2014, 95, 1554-1563.	2.9	9
34	Zebra-borne equine herpesvirus type 1 (EHV- 1) infection in non-African captive mammals. Veterinary Microbiology, 2014 , 169 , 102 - 106 .	1.9	35
35	Equine herpesviruses type 1 (EHV-1) and 4 (EHV-4) $\hat{a}\in$ "Masters of co-evolution and a constant threat to equids and beyond. Veterinary Microbiology, 2013, 167, 123-134.	1.9	84
36	Glycoprotein H and Â4Â1 Integrins Determine the Entry Pathway of Alphaherpesviruses. Journal of Virology, 2013, 87, 5937-5948.	3.4	25

#	Article	IF	Citations
37	The Role of Equine Herpesvirus Type 4 Glycoprotein K in Virus Replication. Viruses, 2012, 4, 1258-1263.	3.3	1
38	Equine Herpesvirus Type 4 UL56 and UL49.5 Proteins Downregulate Cell Surface Major Histocompatibility Complex Class I Expression Independently of Each Other. Journal of Virology, 2012, 86, 8059-8071.	3.4	25
39	Preoperative endoscopic third ventriculostomy in children with posterior fossa tumors: an institution experience. Turkish Neurosurgery, 2012, 23, 359-65.	0.2	14
40	Glycoproteins D of Equine Herpesvirus Type 1 (EHV-1) and EHV-4 Determine Cellular Tropism Independently of Integrins. Journal of Virology, 2012, 86, 2031-2044.	3 . 4	40
41	Third International Havemeyer Workshop on Equine Herpesvirus <i>type 1</i> . Equine Veterinary Journal, 2012, 44, 513-517.	1.7	29
42	The role of secreted glycoprotein G of equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) in immune modulation and virulence. Virus Research, 2012, 169, 203-211.	2.2	8
43	The role of glycoprotein H of equine herpesviruses 1 and 4 (EHV-1 and EHV-4) in cellular host range and integrin binding. Veterinary Research, 2012, 43, 61.	3.0	12
44	In vitro characterization of EHV-4 gG-deleted mutant. Virus Genes, 2012, 44, 109-111.	1.6	2
45	Equine herpesvirus 4: Recent advances using BAC technology. Veterinary Microbiology, 2011, 150, 1-14.	1.9	10
46	Characterization of a thymidine kinase-deficient mutant of equine herpesvirus 4 and in vitro susceptibility of the virus to antiviral agents. Antiviral Research, 2010, 85, 389-395.	4.1	17
47	Glycoprotein C of equine herpesvirus 4 plays a role in viral binding to cell surface heparan sulfate. Virus Research, 2010, 151, 1-9.	2.2	27
48	Inhibition of Sphingosine Kinase by Bovine Viral Diarrhea Virus NS3 Is Crucial for Efficient Viral Replication and Cytopathogenesis. Journal of Biological Chemistry, 2009, 284, 13648-13659.	3 . 4	55
49	Cloning of the genome of equine herpesvirus 4 strain TH20p as an infectious bacterial artificial chromosome. Archives of Virology, 2009, 154, 833-842.	2.1	30
50	Activation of extracellular signal-regulated kinase in MDBK cells infected with bovine viral diarrhea virus. Archives of Virology, 2009, 154, 1499-1503.	2.1	6
51	Detection of a new bat gammaherpesvirus in the Philippines. Virus Genes, 2009, 39, 90-93.	1.6	30
52	Microarray analysis reveals distinct signaling pathways transcriptionally activated by infection with bovine viral diarrhea virus in different cell types. Virus Research, 2009, 142, 188-199.	2.2	20