
Mary C Whitton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8560239/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Survey of Presence and Related Concepts. ACM Computing Surveys, 2018, 50, 1-39.	16.1	257
2	15 Years of Research on Redirected Walking in Immersive Virtual Environments. IEEE Computer Graphics and Applications, 2018, 38, 44-56.	1.0	191
3	Revisiting Milgram and Kishino's Reality-Virtuality Continuum. Frontiers in Virtual Reality, 2021, 2, .	2.5	139
4	Review of Four Studies on the Use of Physiological Reaction as a Measure of Presence in StressfulVirtual Environments. Applied Psychophysiology Biofeedback, 2005, 30, 239-258.	1.0	136
5	Physiological measures of presence in stressful virtual environments. ACM Transactions on Graphics, 2002, , .	4.9	134
6	Evaluation of Reorientation Techniques and Distractors for Walking in Large Virtual Environments. IEEE Transactions on Visualization and Computer Graphics, 2009, 15, 383-394.	2.9	119
7	LLCM-WIP: Low-Latency, Continuous-Motion Walking-in-Place. , 2008, , .		113
8	GUD WIP: Gait-Understanding-Driven Walking-In-Place. , 2010, 2010, 51-58.		93
9	A Psychophysical Experiment Regarding Components of the Plausibility Illusion. IEEE Transactions on Visualization and Computer Graphics, 2017, 23, 1369-1378.	2.9	86
10	Effects of Handling Real Objects and Self-Avatar Fidelity on Cognitive Task Performance and Sense of Presence in Virtual Environments. Presence: Teleoperators and Virtual Environments, 2003, 12, 615-628.	0.3	76
11	The Integrated Virtual Environment Rehabilitation Treadmill System. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 290-297.	2.7	75
12	Evaluating a scientific collaboratory. ACM Transactions on Computer-Human Interaction, 2003, 10, 150-176.	4.6	72
13	Improved Redirection with Distractors: A large-scale-real-walking locomotion interface and its effect on navigation in virtual environments. , 2010, 2010, 35-38.		69
14	Use of Visual and Proprioceptive Feedback to Improve Gait Speed and Spatiotemporal Symmetry Following Chronic Stroke: A Case Series. Physical Therapy, 2012, 92, 748-756.	1.1	69
15	Designing to support situation awareness across distances: an example from a scientific collaboratory. Information Processing and Management, 2004, 40, 989-1011.	5.4	61
16	An evaluation of navigational ability comparing Redirected Free Exploration with Distractors to Walking-in-Place and joystick locomotio interfaces. , 2011, , 55-62.		61
17	The Hand Is More Easily Fooled than the Eye: Users Are More Sensitive to Visual Interpenetration than to Visual-Proprioceptive Discrepancy. Presence: Teleoperators and Virtual Environments, 2006, 15, 1-15.	0.3	58
18	The Design and Evaluation of a Large-Scale Real-Walking Locomotion Interface. IEEE Transactions on Visualization and Computer Graphics, 2012, 18, 1053-1067.	2.9	58

MARY C WHITTON

#	Article	IF	CITATIONS
19	Redirected touching: The effect of warping space on task performance. , 2012, , .		54
20	Sensitivity to scene motion for phases of head yaws. , 2008, , .		53
21	Redirected Touching: Training and adaptation in warped virtual spaces. , 2013, 2013, 79-86.		42
22	Relating Scene-Motion Thresholds to Latency Thresholds for Head-Mounted Displays. Virtual Reality Conference (VR), Proceedings, IEEE, 2009, , 211-218.	0.0	40
23	Memory Design for Raster Graphics Displays. IEEE Computer Graphics and Applications, 1984, 4, 48-65.	1.0	33
24	Evaluation of Reorientation Techniques for Walking in Large Virtual Environments. , 2008, , .		28
25	Immersion and coherence in a stressful virtual environment. , 2018, , .		26
26	Making virtual environments compelling. Communications of the ACM, 2003, 46, 40-47.	3.3	22
27	Effective Cooperative Haptic Interaction over the Internet. , 2007, , .		22
28	Immersion and Coherence: Research Agenda and Early Results. IEEE Transactions on Visualization and Computer Graphics, 2021, 27, 3839-3850.	2.9	22
29	Matching actual treadmill walking speed and visually perceived walking speed in a projection virtual environment. , 2010, , .		19
30	Scene-motion thresholds during head yaw for immersive virtual environments. ACM Transactions on Applied Perception, 2012, 9, 1-23.	1.2	13
31	Stepping-Driven Locomotion Interfaces. , 2013, , 241-262.		13
32	Lessons about Virtual Environment Software Systems from 20 Years of VE Building. Presence: Teleoperators and Virtual Environments, 2010, 19, 162-178.	0.3	12
33	Evaluating the Effectiveness of Redirected Walking with Auditory Distractors for Navigation in Virtual Environments. , 2019, , .		12
34	Serverâ€side workflow execution using data grid technology for reproducible analyses of dataâ€intensive hydrologic systems. Earth and Space Science, 2016, 3, 163-175.	1.1	10
35	Do the Physical Characteristics of a Virtual Reality Device Contraindicate Its Use for Balance Assessment?. Journal of Sport Rehabilitation, 2008, 17, 38-49.	0.4	9
36	Scene-adaptive high dynamic range display for low latency augmented reality. , 2017, , .		9

3

MARY C WHITTON

#	Article	IF	CITATIONS
37	Augmented Reality Applied to Ultrasound-Guided Breast Cyst Aspiration. Breast Disease, 1998, 10, 221-230.	0.4	7
38	Incorporating dynamic real objects into immersive virtual environments. , 2003, , .		7
39	An initial exploration of conversational errors as a novel method for evaluating virtual human experiences. , 2011, , .		7
40	MACBETH: The avatar which I see before me and its movement toward my hand. , 2007, , .		6
41	Locomotion Interfaces. , 2008, , 107-146.		6
42	Implementation and Evaluation of a 50 kHz, <inline-formula> <tex-math notation="LaTeX">\$28mumathrm{s}\$ </tex-math </inline-formula> Motion-to-Pose Latency Head Tracking Instrument. IEEE Transactions on Visualization and Computer Graphics, 2019, 25, 1970-1980.	2.9	6
43	Immersion and coherence in a visual cliff environment. , 2017, , .		5
44	Managing Collaboration in the nanoManipulator. Presence: Teleoperators and Virtual Environments, 2004, 13, 193-210.	0.3	4
45	Latency compensation by horizontal scanline selection for head- mounted displays. , 2007, , .		4
46	Scene-Motion Thresholds Correlate with Angular Head Motions for Immersive Virtual Environments. , 2009, 2009, 69-74.		4
47	Water Science Software Institute: An open source engagement process. , 2013, , .		4
48	LUTE: A Locomotion Usability Test Environmentfor Virtual Reality. , 2018, , .		4
49	Advancing the DFC Semantic Technology Platform via HIVE Innovation. Communications in Computer and Information Science, 2013, , 14-21.	0.4	4
50	The whys, how tos, and pitfalls of user studies. , 2009, , .		3
51	Reliable forward walking parameters from head-track data alone. , 2012, , .		2
52	Coherence changes gaze behavior in virtual human interactions. , 2017, , .		2
53	Getting from Here to There: Locomotion in Virtual Environments. , 2010, , .		1
54	Perceptually inspired methods for naturally navigating virtual worlds. , 2011, , .		1

0

#	Article	IF	CITATIONS
55	Scientific Collaboratories: Evaluating their Potential. Bulletin of the American Society for Information Science, 2005, 28, 12-15.	0.3	0

56 Check Your Work. , 2019, , 453-464.