
Xiong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8559516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of polymeric carbon nitride/TiO2 heterostructure with NH4Cl as template: Structural and photocatalytic studies. Journal of Physics and Chemistry of Solids, 2022, 164, 110629.	1.9	9
2	lonothermal Synthesis of Covalent Triazine Frameworks in a NaClâ€KClâ€ZnCl ₂ Eutectic Salt for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	67
3	Ionothermal Synthesis of Covalent Triazine Frameworks in a NaClâ€KClâ€ZnCl ₂ Eutectic Salt for the Hydrogen Evolution Reaction. Angewandte Chemie, 2022, 134, .	1.6	7
4	Molecular Design of Covalent Triazine Frameworks with Anisotropic Charge Migration for Photocatalytic Hydrogen Production. Small, 2022, 18, e2200129.	5.2	33
5	Organic dyes with multi-branched structures for highly efficient photocatalytic hydrogen evolution under visible-light irradiation. Applied Catalysis B: Environmental, 2022, 309, 121257.	10.8	11
6	Study on preparation, photocatalytic performance and degradation mechanism of polymeric carbon nitride/Pt/nano-spherical MoS2 composite. Journal of Physics and Chemistry of Solids, 2022, 166, 110700.	1.9	10
7	Constructing Synergistic Triazine and Acetylene Cores in Fully Conjugated Covalent Organic Frameworks for Cascade Photocatalytic H ₂ O ₂ Production. Chemistry of Materials, 2022, 34, 5232-5240.	3.2	90
8	Construction of a Hollow Spherical Covalent Organic Framework with Olefin and Imine Dual Linkages Based on Orthogonal Reactions. Chemistry of Materials, 2022, 34, 5249-5257.	3.2	20
9	Rational design of covalent organic frameworks for efficient photocatalytic hydrogen peroxide production. Environmental Science: Nano, 2022, 9, 2464-2469.	2.2	38
10	Bandgap engineering in benzotrithiophene-based conjugated microporous polymers: a strategy for screening metal-free heterogeneous photocatalysts. Journal of Materials Chemistry A, 2021, 9, 3333-3340.	5.2	50
11	Structural design of small-molecule carbon-nitride dyes for photocatalytic hydrogen evolution. Dyes and Pigments, 2021, 185, 108946.	2.0	6
12	A facile one-step fabrication of holey carbon nitride nanosheets for visible-light-driven hydrogen evolution. Applied Catalysis B: Environmental, 2021, 283, 119637.	10.8	87
13	Asymmetric Acceptor–Donor–Acceptor Polymers with Fast Charge Carrier Transfer for Solar Hydrogen Production. Chemistry - A European Journal, 2021, 27, 939-943.	1.7	31
14	A Fully Coplanar Donor–Acceptor Polymeric Semiconductor with Promoted Charge Separation Kinetics for Photochemistry. Angewandte Chemie - International Edition, 2021, 60, 16355-16359.	7.2	94
15	A Fully Coplanar Donor–Acceptor Polymeric Semiconductor with Promoted Charge Separation Kinetics for Photochemistry. Angewandte Chemie, 2021, 133, 16491-16495.	1.6	6
16	Amide-linked covalent organic frameworks as efficient heterogeneous photocatalysts in water. Chinese Journal of Catalysis, 2021, 42, 2010-2019.	6.9	45
17	Supramolecular Alternating Donor–Acceptor Assembly toward Intercalated Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 3712-3717.	6.6	38
18	Screening metal-free photocatalysts from isomorphic covalent organic frameworks for the C-3 functionalization of indoles. Journal of Materials Chemistry A, 2020, 8, 8706-8715.	5.2	66

XIONG CHEN

#	Article	IF	CITATIONS
19	Synthesis of Porous Covalent Quinazoline Networks (CQNs) and Their Gas Sorption Properties. Angewandte Chemie, 2019, 131, 882-886.	1.6	9
20	Reducing the Exciton Binding Energy of Donor–Acceptorâ€Based Conjugated Polymers to Promote Chargeâ€Induced Reactions. Angewandte Chemie, 2019, 131, 10342-10346.	1.6	32
21	Partial Oxidation-Induced Electrical Conductivity and Paramagnetism in a Ni(II) Tetraaza[14]annulene-Linked Metal Organic Framework. Journal of the American Chemical Society, 2019, 141, 16884-16893.	6.6	51
22	Thermal annealing-induced structural reorganization in polymeric photocatalysts for enhanced hydrogen evolution. Chemical Communications, 2019, 55, 7756-7759.	2.2	29
23	Reducing the Exciton Binding Energy of Donor–Acceptorâ€Based Conjugated Polymers to Promote Chargeâ€Induced Reactions. Angewandte Chemie - International Edition, 2019, 58, 10236-10240.	7.2	278
24	Energy-storage covalent organic frameworks: improving performance <i>via</i> engineering polysulfide chains on walls. Chemical Science, 2019, 10, 6001-6006.	3.7	121
25	Organic Radical-Linked Covalent Triazine Framework with Paramagnetic Behavior. ACS Nano, 2019, 13, 5251-5258.	7.3	43
26	Covalent organic framework as an efficient, metal-free, heterogeneous photocatalyst for organic transformations under visible light. Applied Catalysis B: Environmental, 2019, 245, 334-342.	10.8	192
27	Synthesis of Porous Covalent Quinazoline Networks (CQNs) and Their Gas Sorption Properties. Angewandte Chemie - International Edition, 2019, 58, 872-876.	7.2	46
28	Conjugated donor-acceptor polymer photocatalysts with electron-output "tentacles―for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 245, 596-603.	10.8	187
29	Graphitization of graphene oxide films under pressure. Carbon, 2018, 132, 294-303.	5.4	84
30	Folding Graphene Film Yields High Areal Energy Storage in Lithium-Ion Batteries. ACS Nano, 2018, 12, 1739-1746.	7.3	111
31	Freeze-Casting Produces a Graphene Oxide Aerogel with a Radial and Centrosymmetric Structure. ACS Nano, 2018, 12, 5816-5825.	7.3	273
32	Synthesis of novel 2D in-plane anisotropic covalent organic frameworks through a solvent modulated orthogonal strategy. Polymer Chemistry, 2018, 9, 4288-4293.	1.9	10
33	Role of Graphene in Water-Assisted Oxidation of Copper in Relation to Dry Transfer of Graphene. Chemistry of Materials, 2017, 29, 4546-4556.	3.2	63
34	Structural insights into hydrogenated graphite prepared from fluorinated graphite through Birchâ^'type reduction. Carbon, 2017, 121, 309-321.	5.4	12
35	Controlling the Thickness of Thermally Expanded Films of Graphene Oxide. ACS Nano, 2017, 11, 665-674.	7.3	55
36	Porous Two-Dimensional Monolayer Metal–Organic Framework Material and Its Use for the Size-Selective Separation of Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 28107-28116.	4.0	51

XIONG CHEN

#	Article	IF	CITATIONS
37	Designed synthesis of double-stage two-dimensional covalent organic frameworks. Scientific Reports, 2015, 5, 14650.	1.6	107
38	Designed Synthesis of Porphyrin-based Two-dimensional Covalent Organic Frameworks with Highly Ordered Structures. Chemistry Letters, 2015, 44, 1257-1259.	0.7	30
39	Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Scientific Reports, 2015, 5, 8225.	1.6	303
40	Twoâ€Ðimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channelâ€Wall Functionalization. Angewandte Chemie, 2015, 127, 3029-3033.	1.6	129
41	Twoâ€Dimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channelâ€Wall Functionalization. Angewandte Chemie - International Edition, 2015, 54, 2986-2990.	7.2	572
42	Locking Covalent Organic Frameworks with Hydrogen Bonds: General and Remarkable Effects on Crystalline Structure, Physical Properties, and Photochemical Activity. Journal of the American Chemical Society, 2015, 137, 3241-3247.	6.6	320
43	Radical Covalent Organic Frameworks: A General Strategy to Immobilize Openâ€Accessible Polyradicals for Highâ€Performance Capacitive Energy Storage. Angewandte Chemie - International Edition, 2015, 54, 6814-6818.	7.2	342
44	A ï€-electronic covalent organic framework catalyst: ï€-walls as catalytic beds for Diels–Alder reactions under ambient conditions. Chemical Communications, 2015, 51, 10096-10098.	2.2	105
45	Catalytic covalent organic frameworks via pore surface engineering. Chemical Communications, 2014, 50, 1292-1294.	2.2	292
46	Towards covalent organic frameworks with predesignable and aligned open docking sites. Chemical Communications, 2014, 50, 6161-6163.	2.2	136
47	Redox-active conjugated microporous polymers: a new organic platform for highly efficient energy storage. Chemical Communications, 2014, 50, 4788-4790.	2.2	229
48	Twoâ€Dimensional Tetrathiafulvalene Covalent Organic Frameworks: Towards Latticed Conductive Organic Salts. Chemistry - A European Journal, 2014, 20, 14608-14613.	1.7	147
49	Control of Crystallinity and Porosity of Covalent Organic Frameworks by Managing Interlayer Interactions Based on Self-Complementary π-Electronic Force. Journal of the American Chemical Society, 2013, 135, 546-549.	6.6	257
50	A Squaraineâ€Linked Mesoporous Covalent Organic Framework. Angewandte Chemie - International Edition, 2013, 52, 3770-3774.	7.2	287
51	Pore surface engineering in covalent organic frameworks. Nature Communications, 2011, 2, 536.	5.8	387
52	9-Alkylidene-9 <i>H</i> -Fluorene-Containing Polymer for High-Efficiency Polymer Solar Cells. Macromolecules, 2011, 44, 7617-7624.	2.2	99