Osamu Shibata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8559495/publications.pdf

Version: 2024-02-01

257450 345221 1,517 67 24 36 h-index citations g-index papers 69 69 69 1118 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Determination of Acidity Constants of Perfluoroalkanoic Acids. Bulletin of the Chemical Society of Japan, 2001, 74, 667-672.	3.2	70
2	Properties of two-component Langmuir monolayer of single chain perfluorinated carboxylic acids with dipalmitoylphosphatidylcholine (DPPC). Colloids and Surfaces B: Biointerfaces, 2005, 41, 285-298.	5.0	69
3	Examination of Surface Adsorption of Cetyltrimethylammonium Bromide and Sodium Dodecyl Sulfate. Journal of Physical Chemistry B, 2011, 115, 9077-9086.	2.6	63
4	Miscibility behavior of dipalmitoylphosphatidylcholine with a single-chain partially fluorinated amphiphile in Langmuir monolayers. Journal of Colloid and Interface Science, 2003, 265, 83-92.	9.4	59
5	Two-Component Langmuir Monolayers of Single-Chain Partially Fluorinated Amphiphiles with Dipalmitoylphosphatidylcholine (DPPC). Langmuir, 2007, 23, 12634-12644.	3.5	59
6	Mixed Langmuir Monolayers Made from Single-Chain Perfluoroalkylated Amphiphiles. Langmuir, 2000, 16, 10281-10286.	3. 5	53
7	Fluorocarbon-Hybrid Pulmonary Surfactants for Replacement Therapy - A Langmuir Monolayer Study. Langmuir, 2010, 26, 18256-18265.	3. 5	53
8	Langmuir Monolayer of Artificial Pulmonary Surfactant Mixtures with an Amphiphilic Peptide at the Air/Water Interface:  Comparison of New Preparations with Surfacten (Surfactant TA). Langmuir, 2008, 24, 3370-3379.	3.5	47
9	Evaporation from Waterâ^'Ethylene Glycol Liquid Mixture. Langmuir, 2005, 21, 7308-7310.	3 . 5	46
10	Examination of Surface Adsorption of Soluble Surfactants by Surface Potential Measurement at the Air/Solution Interface. Journal of Physical Chemistry C, 2008, 112, 6398-6403.	3.1	45
11	Examination of Surface Adsorption of Sodium Chloride and Sodium Dodecyl Sulfate by Surface Potential Measurement at the Air/Solution Interface. Langmuir, 2005, 21, 9020-9022.	3 . 5	44
12	Mode of Interaction of Amphiphilic \hat{l} ±-Helical Peptide with Phosphatidylcholines at the Airâ \hat{l} Water Interface. Langmuir, 2006, 22, 1182-1192.	3.5	42
13	Mixed Monolayer Properties of Tetradecanoic Acid withn-Perfluorocarboxylic Acids with 10, 12, 14, 16, and 18 Carbon Atoms. Journal of Colloid and Interface Science, 1996, 184, 201-208.	9.4	41
14	Pulmonary Surfactant Model Systems Catch the Specific Interaction of an Amphiphilic Peptide with Anionic Phospholipid. Biophysical Journal, 2009, 96, 1415-1429.	0.5	40
15	Interplay of Hydrophobic and Electrostatic Interactions between Polyoxometalates and Lipid Molecules. Journal of Physical Chemistry C, 2017, 121, 12895-12902.	3.1	38
16	Mixed monolayers made from dipalmitoyl phosphatidylcholine and a fluorinated amphiphile. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 215, 33-41.	4.7	33
17	Molecular Dynamics Investigation on Adsorption Layer of Alcohols at the Air/Brine Interface. Langmuir, 2015, 31, 50-56.	3.5	33
18	Interaction of a partially fluorinated alcohol (F8H11OH) with biomembrane constituents in two-component monolayers. Soft Matter, 2011, 7, 7325.	2.7	32

#	Article	IF	Citations
19	Langmuir monolayer properties of the fluorinated-hydrogenated hybrid amphiphiles with dipalmitoylphosphatidylcholine (DPPC). Colloids and Surfaces B: Biointerfaces, 2006, 47, 165-175.	5.0	31
20	Langmuir Monolayer Properties of Perfluorinated Double Long-Chain Salts with Divalent Counterions of Separate Electric Charge at the Airâ "Water Interface. Langmuir, 2007, 23, 9629-9640.	3.5	31
21	Investigation of interfacial behavior of glycyrrhizin with a lipid raft model via a Langmuir monolayer study. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1271-1283.	2.6	31
22	Mode of Interaction of Hydrophobic Amphiphilic \hat{l}_{\pm} -Helical Peptide/Dipalmitoylphosphatidylcholine with Phosphatidylglycerol or Palmitic Acid at the Airâ´'Water Interface. Langmuir, 2006, 22, 5792-5803.	3.5	30
23	Langmuir monolayer miscibility of single-chain partially fluorinated amphiphiles with tetradecanoic acid. Journal of Colloid and Interface Science, 2009, 337, 201-210.	9.4	25
24	Surface Potential of Methyl Isobutyl Carbinol Adsorption Layer at the Air/Water Interface. Journal of Physical Chemistry B, 2012, 116, 980-986.	2.6	25
25	Influence of a new amphiphilic peptide with phospholipid monolayers at the air–water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 270-271, 52-60.	4.7	22
26	Miscibility and phase behavior of DPPG and perfluorocarboxylic acids at the air–water interface. Chemistry and Physics of Lipids, 2009, 161, 103-114.	3.2	21
27	Specific interaction restrains structural transitions of an amphiphilic peptide in pulmonary surfactant model systems: An in situ PM-IRRAS investigation. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1263-1271.	2.6	20
28	The role of palmitic acid in pulmonary surfactant systems by Langmuir monolayer study: Lipid–peptide interactions. Soft Matter, 2011, 7, 11351.	2.7	20
29	Surface Potential of 1-Hexanol Solution: Comparison with Methyl Isobutyl Carbinol. Journal of Physical Chemistry B, 2013, 117, 7615-7620.	2.6	20
30	Examination of fluorination effect on physical properties of saturated long-chain alcohols by DSC and Langmuir monolayer. Colloids and Surfaces B: Biointerfaces, 2013, 102, 472-478.	5.0	20
31	Miscibility behavior of two-component monolayers at the air–water interface: Perfluorocarboxylic acids and DMPE. Journal of Colloid and Interface Science, 2009, 337, 191-200.	9.4	19
32	Solubilization of $\langle i\rangle n\langle j\rangle$ -Alkylbenzenes into Gemini Surfactant Micelles in Aqueous Medium. Langmuir, 2014, 30, 5771-5779.	3.5	19
33	Mode of interaction of ganglioside Langmuir monolayer originated from echinoderms: Three binary systems of ganglioside/DPPC, ganglioside/DMPE, and ganglioside/cholesterol. Colloids and Surfaces B: Biointerfaces, 2006, 52, 57-75.	5.0	18
34	Adsorption of sodium iodine at air/water interface. Journal of Molecular Liquids, 2020, 298, 112076.	4.9	18
35	Langmuir Monolayer Miscibility of Perfluorocarboxylic Acids with Biomembrane Constituents at the Air-Water Interface. Journal of Oleo Science, 2012, 61, 197-210.	1.4	16
36	Surface structure of sodium chloride solution. Journal of Molecular Liquids, 2017, 248, 1039-1043.	4.9	16

#	Article	lF	Citations
37	Hysteresis behavior of amphiphilic model peptide in lung lipid monolayers at the air–water interface by an IRRAS measurement. Colloids and Surfaces B: Biointerfaces, 2009, 68, 61-67.	5.0	14
38	New Adsorption Model â€"Theory, Phenomena and New Conceptâ€". Journal of Oleo Science, 2015, 64, 1-8.	1.4	14
39	Monolayers of a tetrazine-containing gemini amphiphile: Interplays with biomembrane lipids. Colloids and Surfaces B: Biointerfaces, 2018, 164, 1-10.	5.0	14
40	Interfacial behavior of gemini surfactants with different spacer lengths in aqueous medium. Colloid and Polymer Science, 2019, 297, 183-189.	2.1	14
41	Purification and thermal analysis of perfluoro-n-alkanoic acids. Colloids and Surfaces B: Biointerfaces, 2008, 61, 61-65.	5.0	13
42	\hat{l}^2 -Galactosidase Langmuir Monolayer at Air/X-gal Subphase Interface. Journal of Physical Chemistry B, 2016, 120, 12279-12286.	2.6	13
43	Apparatus for Measuring the Evaporation Rate of Water across an Air/Water Interface. Langmuir, 2000, 16, 9697-9698.	3.5	12
44	Water evaporation rates across hydrophobic acid monolayers at equilibrium spreading pressure. Journal of Colloid and Interface Science, 2008, 318, 322-330.	9.4	12
45	Miscibility Behavior of Sphingomyelin with Phytosterol Derivatives by a Langmuir Monolayer Approach. Journal of Oleo Science, 2013, 62, 809-824.	1.4	12
46	Interfacial Properties in Langmuir Monolayers and LB Films of DPPC with Partially Fluorinated Alcohol (F8H7OH). Journal of Oleo Science, 2013, 62, 1017-1027.	1.4	12
47	Role of the spacer of Gemini surfactants in solubilization into their micelles. Journal of Molecular Liquids, 2017, 244, 499-505.	4.9	12
48	Surface pressure induced structural transitions of an amphiphilic peptide in pulmonary surfactant systems by an in situ PM-IRRAS study. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1205-1213.	2.6	11
49	lonic Nature of a Gemini Surfactant at the Air/Water Interface. Langmuir, 2016, 32, 12842-12847.	3.5	11
50	Interactions of a Tetrazine Derivative with Biomembrane Constituents: A Langmuir Monolayer Study. Langmuir, 2016, 32, 6591-6599.	3.5	11
51	Fluobodies against Bioactive Natural Products and their Application in Fluorescence-Linked Immunosorbent Assay. Antibodies, 2012, 1, 239-258.	2.5	10
52	Monolayer Compression Induces Fluidization in Binary System of Partially Fluorinated Alcohol (F4H11OH) with DPPC. Journal of Oleo Science, 2013, 62, 271-281.	1.4	10
53	Langmuir monolayers of cerebroside originated from Linckia laevigata: Binary systems of cerebrosides and phospholipid. Colloids and Surfaces B: Biointerfaces, 2005, 44, 123-142.	5.0	9
54	Development of low cost pulmonary surfactants composed of a mixture of lipids or lipids–peptides using higher aliphatic alcohol or soy lecithin. Colloids and Surfaces B: Biointerfaces, 2008, 66, 281-286.	5.0	9

#	Article	IF	CITATIONS
55	Solubilization of n-Alkylbenzenes into Octaethylene Glycol Mono-n-tetradecyl Ether (C14E8) Micelles. Langmuir, 2007, 23, 7505-7509.	3.5	7
56	Solution Properties of Gemini Surfactant of Decanediyl-1-10-bis (dimethyltetradecylammonium) Tj ETQq0 0 0 rgl	BT <u> O</u> verlo	ck
57	Lateral interaction of cholesterol with a semifluorinated amphiphile at the air–water interface. Colloids and Surfaces B: Biointerfaces, 2019, 181, 1035-1040.	5.0	5
58	Improvement of pulmonary surfactant activity by introducing D-amino acids into highly hydrophobic amphiphilic α-peptide Hel 13-5. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2046-2052.	2.6	4
59	How Selfâ€Assembled Nanodomains Can Impact the Organization of a Phospholipid Monolayerâ€Flowerâ€Like Arrays. ChemPhysChem, 2020, 21, 1966-1970.	2.1	4
60	Miscibility of Egg Yolk Lecithin with Palmitic Acid and Hexadecanol at the Air-Water Interface. Journal of Oleo Science, 2013, 62, 471-480.	1.4	2
61	Interfacial Behavior of Pulmonary Surfactant Preparations Containing Egg Yolk Lecithin. Journal of Oleo Science, 2014, 63, 1159-1168.	1.4	2
62	Impairing effect of fibrinogen on the mono-/bi-layer form of bovine lung surfactant. Colloid and Polymer Science, 2014, 292, 2765-2774.	2.1	2
63	Fluidity of binary monolayers of semi-fluorinated and non-fluorinated fatty alcohols at the airâ°water interface. Journal of Fluorine Chemistry, 2019, 228, 109408.	1.7	1
64	Inverse electron-demand diels-alder reactions of tetrazine and norbornene at the air-water interface. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112333.	5.0	1
65	Langmuir Monolayer Properties of Fluorinated Fatty Alcohols and Dipalmitoylphosphatidylcholine (DPPC). ACS Symposium Series, 2015, , 1-24.	0.5	0
66	Interfacial Properties of Binary Systems Composed of DPPC and Perfluorinated Double Long-Chain Salts with Divalent Counterions of Separate Electric Charge. Journal of Oleo Science, 2017, 66, 479-489.	1.4	0
67	Interplay of long-chain tetrazine derivatives and biomembrane components at the air–water interface. Biophysics Reviews, 2022, 3, 021303.	2.7	0