
Athanasios Tzempelikos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/855895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The impact of shading design and control on building cooling and lighting demand. Solar Energy, 2007, 81, 369-382.	2.9	432
2	Experimental and simulation analysis of daylight glare probability inÂoffices with dynamic window shades. Building and Environment, 2015, 87, 244-254.	3.0	142
3	The effect of reflective coatings on building surface temperatures, indoor environment and energy consumption—An experimental study. Energy and Buildings, 2011, 43, 573-580.	3.1	125
4	Efficient venetian blind control strategies considering daylight utilization and glare protection. Solar Energy, 2013, 98, 241-254.	2.9	122
5	Comparative control strategies for roller shades with respect to daylighting and energy performance. Building and Environment, 2013, 67, 179-192.	3.0	122
6	Occupant interactions with shading and lighting systems using different control interfaces: A pilot field study. Building and Environment, 2016, 97, 177-195.	3.0	116
7	Daylighting and energy analysis of private offices with automated interior roller shades. Solar Energy, 2012, 86, 681-704.	2.9	115
8	A methodology for simulation of daylight room illuminance distribution and light dimming for a room with a controlled shading device. Solar Energy, 2002, 72, 271-281.	2.9	112
9	Sensitivity analysis on daylighting and energy performance of perimeter offices with automated shading. Building and Environment, 2013, 59, 303-314.	3.0	108
10	Indoor thermal environmental conditions near glazed facades with shading devices – Part I: Experiments and building thermal model. Building and Environment, 2010, 45, 2506-2516.	3.0	107
11	The impact of venetian blind geometry and tilt angle on view, direct light transmission and interior illuminance. Solar Energy, 2008, 82, 1172-1191.	2.9	91
12	Daylight glare evaluation with the sun in the field of view through window shades. Building and Environment, 2017, 113, 65-77.	3.0	89
13	A Bayesian approach for probabilistic classification and inference of occupant thermal preferences in office buildings. Building and Environment, 2017, 118, 323-343.	3.0	87
14	Indoor thermal environmental conditions near glazed facades with shading devices – Part II: Thermal comfort simulation and impact of glazing and shading properties. Building and Environment, 2010, 45, 2517-2525.	3.0	84
15	Simulation of façade and envelope design options for a new institutional building. Solar Energy, 2007, 81, 1088-1103.	2.9	81
16	Model-based shading and lighting controls considering visual comfort and energy use. Solar Energy, 2016, 134, 416-428.	2.9	81
17	The effect of lighting environment on task performance in buildings – A review. Energy and Buildings, 2020, 226, 110394.	3.1	63
18	A systematic method for selecting roller shade properties for glare protection. Energy and Buildings, 2015, 92, 81-94.	3.1	57

#	Article	IF	CITATIONS
19	Inference of thermal preference profiles for personalized thermal environments with actual building occupants. Building and Environment, 2019, 148, 714-729.	3.0	57
20	Implementation of a self-tuned HVAC controller to satisfy occupant thermal preferences and optimize energy use. Energy and Buildings, 2019, 194, 301-316.	3.1	50
21	A hybrid ray-tracing and radiosity method for calculating radiation transport and illuminance distribution in spaces with venetian blinds. Solar Energy, 2012, 86, 3109-3124.	2.9	47
22	View clarity index: A new metric to evaluate clarity of view through window shades. Building and Environment, 2015, 90, 206-214.	3.0	45
23	Comfort metrics for an integrated evaluation of buildings performance. Energy and Buildings, 2016, 127, 411-424.	3.1	43
24	A personalized daylighting control approach to dynamically optimize visual satisfaction and lighting energy use. Energy and Buildings, 2019, 193, 111-126.	3.1	41
25	Daylight-linked synchronized shading operation using simplified model-based control. Energy and Buildings, 2017, 145, 200-212.	3.1	39
26	Comfort and energy performance analysis of different glazing systems coupled with three shading control strategies. Science and Technology for the Built Environment, 2018, 24, 545-558.	0.8	35
27	Advances on daylighting and visual comfort research. Building and Environment, 2017, 113, 1-4.	3.0	33
28	Bayesian classification and inference of occupant visual preferences in daylit perimeter private offices. Energy and Buildings, 2018, 166, 505-524.	3.1	28
29	Review of modelling approaches for passive ceiling cooling systems. Journal of Building Performance Simulation, 2015, 8, 145-172.	1.0	27
30	Real-time daylight glare control using a low-cost, window-mounted HDRI sensor. Building and Environment, 2020, 177, 106912.	3.0	26
31	Estimating detailed optical properties of window shades from basic available data and modeling implications on daylighting and visual comfort. Energy and Buildings, 2016, 126, 396-407.	3.1	25
32	Temperature dependent thermoelectric properties of cuprous delafossite oxides. Composites Part B: Engineering, 2019, 156, 108-112.	5.9	23
33	Energy savings potential of passive chilled beams vs air systems in various US climatic zones with different system configurations. Energy and Buildings, 2019, 186, 244-260.	3.1	23
34	Comparing performance of discomfort glare metrics in high and low adaptation levels. Building and Environment, 2021, 206, 108335.	3.0	23
35	Daylighting and Energy Analysis of Multi-sectional Facades. Energy Procedia, 2015, 78, 189-194.	1.8	22
36	Inferring personalized visual satisfaction profiles in daylit offices from comparative preferences using a Bayesian approach. Building and Environment, 2018, 138, 74-88.	3.0	17

#	Article	IF	CITATIONS
37	Daylighting performance evaluation of a bottom-up motorized roller shade. Solar Energy, 2010, 84, 2120-2131.	2.9	14
38	Dynamic Commercial Façades versus Traditional Construction: Energy Performance and Comparative Analysis. Journal of Energy Engineering - ASCE, 2015, 141, .	1.0	14
39	A smart and less intrusive feedback request algorithm towards human-centered HVAC operation. Building and Environment, 2020, 184, 107190.	3.0	14
40	A Holistic Approach for Improving Visual Environment in Private Offices. Procedia Environmental Sciences, 2017, 38, 372-380.	1.3	9
41	Experimental investigation and data-driven regression models for performance characterization of single and multiple passive chilled beam systems. Energy and Buildings, 2018, 158, 1736-1750.	3.1	8
42	Thermal preference-based control studies: review and detailed classification. Science and Technology for the Built Environment, 2021, 27, 1031-1039.	0.8	8
43	Efficient learning of personalized visual preferences in daylit offices: An online elicitation framework. Building and Environment, 2020, 181, 107013.	3.0	7
44	Evaluation of view clarity through solar shading fabrics. Building and Environment, 2022, 212, 108750.	3.0	7
45	Development and Implementation of Lighting and Shading Control Algorithms in an Airport Building. Journal of Architectural Engineering, 2012, 18, 242-250.	0.8	6
46	Semi-automated luminance map re-projection via high dynamic range imaging and indoor space 3-D reconstruction. Automation in Construction, 2021, 129, 103812.	4.8	6
47	A low-cost stereo-fisheye camera sensor for daylighting and glare control. Journal of Physics: Conference Series, 2019, 1343, 012157.	0.3	5
48	Performance evaluation of non-intrusive luminance mapping towards human-centered daylighting control. Building and Environment, 2022, 213, 108857.	3.0	4
49	Personalized visual satisfaction profiles from comparative preferences using Bayesian inference. Energy Procedia, 2017, 122, 547-552.	1.8	2
50	Integrating occupants' voluntary thermal preference responses into personalized thermal control in office buildings. Journal of Physics: Conference Series, 2019, 1343, 012138.	0.3	2
51	Analysis of Balance Between Modeling Accuracy and Computational Speed for a Hybrid Ray-Tracing and Radiosity Method Used in Lighting Simulation. , 2013, , .		1
52	An integrated method and web tool to assess visual environment in spaces with window shades. Science and Technology for the Built Environment, 2018, 24, 470-482.	0.8	1
53	Cool Roofs in the US: The Impact of Roof Reflectivity, Insulation and Attachment Method on Annual Energy Cost. Energies, 2021, 14, 7656.	1.6	1
54	Modeling high-performance buildings. HVAC and R Research, 2011, 17, 231-234.	0.9	0

#	Article	IF	CITATIONS
55	Comparison of Shading Control Modes On Offices Space Energy Performance. , 2013, , .		Ο
56	Predictive controls, modeling, and technology assessment for high-performance buildings. Science and Technology for the Built Environment, 2015, 21, 719-720.	0.8	0
57	An online interactive tool to assess visual environment in offices with roller shades. Energy Procedia, 2017, 122, 685-690.	1.8	0