
Nigel W Beebe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8558682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laboratory Diagnostic Techniques for <i>Entamoeba</i> Species. Clinical Microbiology Reviews, 2007, 20, 511-532.	5.7	382
2	Discrimination of all Members of the Anopheles punctulatus Complex by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Analysis. American Journal of Tropical Medicine and Hygiene, 1995, 53, 478-481.	0.6	254
3	The dengue vector Aedes aegypti: what comes next. Microbes and Infection, 2010, 12, 272-279.	1.0	235
4	Australia's Dengue Risk Driven by Human Adaptation to Climate Change. PLoS Neglected Tropical Diseases, 2009, 3, e429.	1.3	168
5	Successful malaria elimination strategies require interventions that target changing vector behaviours. Malaria Journal, 2013, 12, 56.	0.8	135
6	Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti. PLoS Neglected Tropical Diseases, 2015, 9, e0003894.	1.3	128
7	Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs. Parasites and Vectors, 2015, 8, 96.	1.0	114
8	PCR Detection of Entamoeba histolytica , Entamoeba dispar , and Entamoeba moshkovskii in Stool Samples from Sydney, Australia. Journal of Clinical Microbiology, 2007, 45, 1035-1037.	1.8	109
9	Discovery of a Widespread Infestation of Aedes albopictus in the Torres Strait, Australia. Journal of the American Mosquito Control Association, 2006, 22, 358-365.	0.2	104
10	Prospective Study of the Prevalence, Genotyping, and Clinical Relevance of Dientamoeba fragilis Infections in an Australian Population. Journal of Clinical Microbiology, 2005, 43, 2718-2723.	1.8	84
11	Tracing the Tiger: Population Genetics Provides Valuable Insights into the Aedes (Stegomyia) albopictus Invasion of the Australasian Region. PLoS Neglected Tropical Diseases, 2013, 7, e2361.	1.3	81
12	DNA barcoding mosquitoes: advice for potential prospectors. Parasitology, 2018, 145, 622-633.	0.7	81
13	Dientamoebiasis: clinical importance and recent advances. Trends in Parasitology, 2006, 22, 92-96.	1.5	78
14	PREVALENCE OF ENTERIC PROTOZOA IN HUMAN IMMUNODEFICIENCY VIRUS (HIV)–POSITIVE AND HIV-NEGATIVE MEN WHO HAVE SEX WITH MEN FROM SYDNEY, AUSTRALIA. American Journal of Tropical Medicine and Hygiene, 2007, 76, 549-552.	0.6	77
15	DNA sequence analysis of the ribosomal DNA ITS2 region for the Anopheles punctulatus group of mosquitoes. Insect Molecular Biology, 1999, 8, 381-390.	1.0	76
16	Detection of Dientamoeba fragilis in fresh stool specimens using PCR. International Journal for Parasitology, 2005, 35, 57-62.	1.3	75
17	Releasing incompatible males drives strong suppression across populations of wild and <i>Wolbachia</i> -carrying <i>Aedes aegypti</i> in Australia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	71
18	Speciation and Distribution of the Members of the <i>Anopheles punctulatus</i> (Diptera: Culicidae) Group in Papua New Guinea. Journal of Medical Entomology, 2002, 39, 16-27.	0.9	68

#	Article	IF	CITATIONS
19	Barrier screens: a method to sample blood-fed and host-seeking exophilic mosquitoes. Malaria Journal, 2013, 12, 49.	0.8	67
20	A New Clade of Insect-Specific Flaviviruses from Australian <i>Anopheles</i> Mosquitoes Displays Species-Specific Host Restriction. MSphere, 2017, 2, .	1.3	64
21	Tiger on the prowl: Invasion history and spatio-temporal genetic structure of the Asian tiger mosquito Aedes albopictus (Skuse 1894) in the Indo-Pacific. PLoS Neglected Tropical Diseases, 2017, 11, e0005546.	1.3	63
22	Mosquito host-feeding patterns and implications for Japanese encephalitis virus transmission in northern Australia and Papua New Guinea. Medical and Veterinary Entomology, 2003, 17, 403-411.	0.7	62
23	Field Evaluation of Repellent Formulations Containing Deet and Picaridin Against Mosquitoes in Northern Territory, Australia. Journal of Medical Entomology, 2004, 41, 414-417.	0.9	59
24	A curious coincidence: mosquito biodiversity and the limits of the Japanese encephalitis virus in Australasia. BMC Evolutionary Biology, 2007, 7, 100.	3.2	59
25	Evaluation of Three Diagnostic Methods, Including Real-Time PCR, for Detection of Dientamoeba fragilis in Stool Specimens. Journal of Clinical Microbiology, 2006, 44, 232-235.	1.8	56
26	Distribution and evolution of the Anopheles punctulatus group (Diptera: Culicidae) in Australia and Papua New Guinea. International Journal for Parasitology, 2002, 32, 563-574.	1.3	53
27	A novel insect-specific flavivirus replicates only in Aedes-derived cells and persists at high prevalence in wild Aedes vigilax populations in Sydney, Australia. Virology, 2015, 486, 272-283.	1.1	51
28	Vectors and malaria transmission in deforested, rural communities in north-central Vietnam. Malaria Journal, 2010, 9, 259.	0.8	49
29	Populations of the south-west Pacific malaria vector Anopheles farauti s.s. revealed by ribosomal DNA transcribed spacer polymorphisms. Heredity, 2000, 84, 244-253.	1.2	48
30	Changes in vector species composition and current vector biology and behaviour will favour malaria elimination in Santa Isabel Province, Solomon Islands. Malaria Journal, 2011, 10, 287.	0.8	46
31	Ten years of the Tiger: Aedes albopictus presence in Australia since its discovery in the Torres Strait in 2005. One Health, 2016, 2, 19-24.	1.5	43
32	Intraspecific Concerted Evolution of the rDNA ITS1 in Anopheles farauti Sensu Stricto (Diptera:) Tj ETQq0 0 0 rgE 397-411.	3T /Overlo 0.8	ck 10 Tf 50 22 42
33	Frequent blood feeding enables insecticide-treated nets to reduce transmission by mosquitoes that bite predominately outdoors. Malaria Journal, 2016, 15, 156.	0.8	41
34	A Phylogenetic Study of the Anopheles punctulatus Group of Malaria Vectors Comparing rDNA Sequence Alignments Derived from the Mitochondrial and Nuclear Small Ribosomal Subunits. Molecular Phylogenetics and Evolution, 2000, 17, 430-436.	1.2	37
35	Internal Repetition and Intraindividual Variation in the rDNA ITS1 of the Anopheles punctulatus Group (Diptera: Culicidae): Multiple Units and Rates of Turnover. Journal of Molecular Evolution, 2009, 68, 66-79.	0.8	35
36	Resolving genetic diversity in Australasian Culex mosquitoes: Incongruence between the mitochondrial cytochrome c oxidase I and nuclear acetylcholine esterase 2. Molecular Phylogenetics and Evolution, 2009, 50, 317-325.	1.2	34

#	Article	IF	CITATIONS
37	Incomplete concerted evolution and reproductive isolation at the rDNA locus uncovers nine cryptic species within Anopheles longirostris from Papua New Guinea. BMC Evolutionary Biology, 2010, 10, 392.	3.2	34
38	Prevalence of enteric protozoa in human immunodeficiency virus (HIV)-positive and HIV-negative men who have sex with men from Sydney, Australia. American Journal of Tropical Medicine and Hygiene, 2007, 76, 549-52.	0.6	33
39	A Polymerase Chain Reaction-Based Diagnostic to Identify Larvae and Eggs of Container Mosquito Species from the Australian Region. Journal of Medical Entomology, 2007, 44, 376-380.	0.9	32
40	Evolutionary potential of the extrinsic incubation period of dengue virus in <i>Aedes aegypti</i> . Evolution; International Journal of Organic Evolution, 2016, 70, 2459-2469.	1.1	30
41	Comparative Susceptibility of Mosquito Populations in North Queensland, Australia to Oral Infection with Dengue Virus. American Journal of Tropical Medicine and Hygiene, 2014, 90, 422-430.	0.6	29
42	Use of rhodamine B to mark the body and seminal fluid of male Aedes aegypti for mark-release-recapture experiments and estimating efficacy of sterile male releases. PLoS Neglected Tropical Diseases, 2017, 11, e0005902.	1.3	28
43	Entomological Monitoring and Evaluation: Diverse Transmission Settings of ICEMR Projects Will Require Local and Regional Malaria Elimination Strategies. American Journal of Tropical Medicine and Hygiene, 2015, 93, 28-41.	0.6	27
44	DNA Probes for Identifying the Members of the Anopheles punctulatus Complex in Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 1994, 50, 229-234.	0.6	27
45	Responses of mosquitoes of the Anopheles farauti complex to 1-octen-3-ol and light in combination with carbon dioxide in northern Queensland, Australia. Medical and Veterinary Entomology, 1997, 11, 177-180.	0.7	26
46	<i>Anopheles punctulatus</i> Group: Evolution, Distribution, and Control. Annual Review of Entomology, 2015, 60, 335-350.	5.7	26
47	Anopheles farauti is a homogeneous population that blood feeds early and outdoors in the Solomon Islands. Malaria Journal, 2016, 15, 151.	0.8	25
48	Spatial-temporal heterogeneity in malaria receptivity is best estimated by vector biting rates in areas nearing elimination. Parasites and Vectors, 2018, 11, 606.	1.0	25
49	Determinants of host feeding success by Anopheles farauti. Malaria Journal, 2016, 15, 152.	0.8	24
50	Malaria vectors of Timor-Leste. Malaria Journal, 2010, 9, 40.	0.8	23
51	DNA Probes for the Anopheles punctulatus Complex. American Journal of Tropical Medicine and Hygiene, 1996, 54, 395-398.	0.6	23
52	Waterproof, low-cost, long-battery-life sound trap for surveillance of male Aedes aegypti for rear-and-release mosquito control programmes. Parasites and Vectors, 2019, 12, 417.	1.0	21
53	A polymerase chain reaction-based diagnostic to identify larvae and eggs of container mosquito species from the Australian region. Journal of Medical Entomology, 2007, 44, 376-80.	0.9	21
54	Identifying the fitness costs of a pyrethroid-resistant genotype in the major arboviral vector Aedes aegypti. Parasites and Vectors, 2020, 13, 358.	1.0	20

#	Article	IF	CITATIONS
55	Trap Location and Premises Condition Influences on Aedes aegypti (Diptera: Culicidae) Catches Using Biogents Sentinel Traps During a â€~Rear and Release' Program: Implications for Designing Surveillance Programs. Journal of Medical Entomology, 2019, 56, 1102-1111.	0.9	16
56	Assessment of population genetic structure in the arbovirus vector midge, Culicoides brevitarsis (Diptera: Ceratopogonidae), using multi-locus DNA microsatellites. Veterinary Research, 2015, 46, 108.	1.1	15
57	Microsatellite and mitochondrial markers reveal strong gene flow barriers for Anopheles farauti in the Solomon Archipelago: implications for malaria vector control. International Journal for Parasitology, 2014, 44, 225-233.	1.3	14
58	Diel flight activity of wild-caught Anopheles farauti (s.s.) and An. hinesorum malaria mosquitoes from northern Queensland, Australia. Parasites and Vectors, 2019, 12, 48.	1.0	14
59	DOES 1-OCTEN-3-OL ENHANCE TRAP COLLECTIONS OF JAPANESE ENCEPHALITIS VIRUS MOSQUITO VECTORS IN NORTHERN AUSTRALIA?. Journal of the American Mosquito Control Association, 2006, 22, 15-21.	0.2	13
60	Genetic diversity of the dengue vector Aedes aegypti in Australia and implications for future surveillance and mainland incursion monitoring. Communicable Diseases Intelligence Quarterly Report, 2005, 29, 299-304.	0.6	13
61	Dientamoeba fragilisas a Cause of Travelers' Diarrhea: Report of Seven Cases: Table 1. Journal of Travel Medicine, 2007, 14, 72-73.	1.4	12
62	The presence of knockdown resistance mutations reduces male mating competitiveness in the major arbovirus vector, Aedes aegypti. PLoS Neglected Tropical Diseases, 2021, 15, e0009121.	1.3	12
63	Mark-release-recapture of male Aedes aegypti (Diptera: Culicidae): Use of rhodamine B to estimate movement, mating and population parameters in preparation for an incompatible male program. PLoS Neglected Tropical Diseases, 2021, 15, e0009357.	1.3	12
64	Misidentification of a Philippine Malaria Vector Revealed by Allozyme and Ribosomal DNA Markers. American Journal of Tropical Medicine and Hygiene, 1996, 54, 46-48.	0.6	12
65	The Systematics and Bionomics of Malaria Vectors in the Southwest Pacific. , 0, , .		9
66	Multilocus population genetic analysis of the Southwest Pacific malaria vector Anopheles punctulatus. International Journal for Parasitology, 2013, 43, 825-835.	1.3	8
67	Morphological versus molecular identification of <i><scp>C</scp>ulex annulirostris</i> â€ <scp>S</scp> kuse and <i><scp>C</scp>ulex palpalis</i> â€ <scp>T</scp> aylor: key members of the <i><scp>C</scp>ulex sitiens</i> (<scp>D</scp> iptera: <scp>C</scp> ulicidae) subgroup in <scp>A</scp> ustralasia. Australian lournal of Entomology. 2013. 52. 356-362.	1.1	7
68	Larval habitats of the Anopheles farauti and Anopheles lungae complexes in the Solomon Islands. Malaria Journal, 2016, 15, 164.	0.8	7
69	Seasonal Abundance of <i>Anopheles farauti</i> (Diptera: Culicidae) Sibling Species in Far North Queensland, Australia. Journal of Medical Entomology, 2000, 37, 153-161.	0.9	6
70	Improving Estimates of Fried's Index from Mating Competitiveness Experiments. Journal of Agricultural, Biological, and Environmental Statistics, 2018, 23, 446-462.	0.7	6
71	The impact of sublethal permethrin exposure on susceptible and resistant genotypes of the urban disease vector Aedes aegypti. Pest Management Science, 2021, 77, 3450-3457.	1.7	5
72	Economic Valuation of the Threat Posed by the Establishment of the Asian Tiger Mosquito in Australia. Environmental and Resource Economics, 2018, 71, 357-379.	1.5	3

#	Article	IF	CITATIONS
73	Smallest Anopheles farauti occur during the peak transmission season in the Solomon Islands. Malaria Journal, 2019, 18, 208.	0.8	3
74	Gene flow between island populations of the malaria mosquito, Anopheles hinesorum , may have contributed to the spread of divergent host preference phenotypes. Evolutionary Applications, 2021, 14, 2244-2257.	1.5	3
75	Defining the larval habitat: abiotic and biotic parameters associated with Anopheles farauti productivity. Malaria Journal, 2019, 18, 416.	0.8	2
76	Comparisons of chemosensory gene repertoires in human and non-human feeding Anopheles mosquitoes link olfactory genes to anthropophily. IScience, 2022, 25, 104521.	1.9	2
77	Population genetics ofAnopheles koliensisthrough Papua New Guinea: New cryptic species and landscape topography effects on genetic connectivity. Ecology and Evolution, 2019, 9, 13375-13388.	0.8	1