Federico Delfino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8558320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A dynamic optimization-based architecture for polygeneration microgrids with tri-generation, renewables, storage systems and electrical vehicles. Energy Conversion and Management, 2015, 96, 511-520.	9.2	114
2	Optimal Control and Operation of Grid-Connected Photovoltaic Production Units for Voltage Support in Medium-Voltage Networks. IEEE Transactions on Sustainable Energy, 2014, 5, 254-263.	8.8	105
3	A mathematical model for the optimal operation of the University of Genoa Smart Polygeneration Microgrid: Evaluation of technical, economic and environmental performance indicators. Energy, 2014, 64, 912-922.	8.8	92
4	The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges. Renewable and Sustainable Energy Reviews, 2013, 18, 442-459.	16.4	91
5	Lightning return stroke current radiation in presence of a conducting ground: 2. Validity assessment of simplified approaches. Journal of Geophysical Research, 2008, 113, .	3.3	77
6	Lightning return stroke current radiation in presence of a conducting ground: 1. Theory and numerical evaluation of the electromagnetic fields. Journal of Geophysical Research, 2008, 113, .	3.3	72
7	Cooray–Rubinstein Formula for the Evaluation of Lightning Radial Electric Fields: Derivation and Implementation in the Time Domain. IEEE Transactions on Electromagnetic Compatibility, 2008, 50, 194-197.	2.2	70
8	Evaluation of Power System Lightning Performance, Part I: Model and Numerical Solution Using the PSCAD-EMTDC Platform. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 137-145.	2.2	66
9	An Algorithm for the Exact Evaluation of the Underground Lightning Electromagnetic Fields. IEEE Transactions on Electromagnetic Compatibility, 2007, 49, 401-411.	2.2	57
10	An Energy Management System for the Savona Campus Smart Polygeneration Microgrid. IEEE Systems Journal, 2017, 11, 1799-1809.	4.6	52
11	Energy planning of sustainable districts: Towards the exploitation of small size intermittent renewables in urban areas. Applied Energy, 2018, 228, 2288-2297.	10.1	49
12	Evaluation of Power System Lightning Performance—Part II: Application to an Overhead Distribution Network. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 146-153.	2.2	47
13	Influence of frequencyâ€dependent soil electrical parameters on the evaluation of lightning electromagnetic fields in air and underground. Journal of Geophysical Research, 2009, 114, .	3.3	45
14	An Energy Management Platform for the Optimal Control of Active and Reactive Powers in Sustainable Microgrids. IEEE Transactions on Industry Applications, 2019, 55, 7146-7156.	4.9	44
15	A mathematical model for the dynamic simulation of low size cogeneration gas turbines within smart microgrids. Energy, 2017, 119, 710-723.	8.8	42
16	A Feedback Linearization Control Scheme for the Integration of Wind Energy Conversion Systems Into Distribution Grids. IEEE Systems Journal, 2012, 6, 85-93.	4.6	41
17	Lightning electromagnetic radiation over a stratified conducting ground: 2. Validity of simplified approaches. Journal of Geophysical Research, 2011, 116, .	3.3	39
18	Time-Domain Implementation of Cooray–Rubinstein Formula via Convolution Integral and Rational Approximation. IEEE Transactions on Electromagnetic Compatibility, 2011, 53, 755-763.	2.2	38

Federico Delfino

#	Article	IF	CITATIONS
19	A real-time Energy Management System for the integration of economical aspects and system operator requirements: Definition and validation. Renewable Energy, 2017, 102, 406-416.	8.9	38
20	Planning & Open-Air Demonstrating Smart City Sustainable Districts. Sustainability, 2018, 10, 4636.	3.2	38
21	Design criteria for the optimal sizing of integrated photovoltaic-storage systems. Energy, 2018, 149, 505-515.	8.8	37
22	Lightning electromagnetic radiation over a stratified conducting ground: Formulation and numerical evaluation of the electromagnetic fields. Journal of Geophysical Research, 2011, 116, .	3.3	35
23	A pilot facility for analysis and simulation of smart microgrids feeding smart buildings. Renewable and Sustainable Energy Reviews, 2016, 58, 1247-1255.	16.4	35
24	A Feedback Linearization Scheme for the Control of Synchronous Generators. Electric Power Components and Systems, 2012, 40, 1842-1869.	1.8	32
25	Prony Series Representation for the Lightning Channel Base Current. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 308-315.	2.2	32
26	Identification and optimal control of an electrical storage system for microgrids with renewables. Sustainable Energy, Grids and Networks, 2019, 17, 100183.	3.9	32
27	Definition and on-field validation of a microgrid energy management system to manage load and renewables uncertainties and system operator requirements. Electric Power Systems Research, 2017, 146, 349-361.	3.6	28
28	Modeling and Experimental Validation of an Islanded No-Inertia Microgrid Site. IEEE Transactions on Sustainable Energy, 2018, 9, 1812-1821.	8.8	27
29	Data-Driven Photovoltaic Power Production Nowcasting and Forecasting for Polygeneration Microgrids. IEEE Systems Journal, 2018, 12, 2842-2853.	4.6	27
30	Electrical storage systems based on Sodium/Nickel chloride batteries: A mathematical model for the cell electrical parameter evaluation validated on a real smart microgrid application. Journal of Power Sources, 2018, 399, 372-382.	7.8	27
31	Modeling and Maximum Power Point Tracking Control of Wind Generating Units Equipped with Permanent Magnet Synchronous Generators in Presence of Losses. Energies, 2017, 10, 102.	3.1	26
32	An optimization algorithm for the operation planning of the University of Genoa smart polygeneration microgrid. , 2013, , .		23
33	An architecture for the optimal control of tertiary and secondary levels in small-size islanded microgrids. International Journal of Electrical Power and Energy Systems, 2018, 103, 75-88.	5.5	23
34	Economic and environmental performances quantification of the university of Genoa Smart Polygeneration Microgrid. , 2012, , .		22
35	An Effective Approach for High-Frequency Electromagnetic Field-to-Line Coupling Analysis Based on Regularization Techniques. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 1289-1297.	2.2	20
36	A simplified first harmonic model for the Savona Campus Smart Polygeneration Microgrid. , 2017, , .		17

A simplified first harmonic model for the Savona Campus Smart Polygeneration Microgrid. , 2017, , . 36

FEDERICO DELFINO

#	Article	IF	CITATIONS
37	A review on the return stroke engineering models attenuation function: Proposed expressions, validation and identification methods. Electric Power Systems Research, 2019, 172, 230-241.	3.6	17
38	A fieldâ€based inverse algorithm for the identification of different height lightning return strokes. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2001, 20, 724-731.	0.9	16
39	Key Performance Indicators for an Energy Community Based on Sustainable Technologies. Sustainability, 2021, 13, 8789.	3.2	16
40	Planning and management of sustainable microgrids: The test-bed facilities at the University of Genoa. , 2013, , .		15
41	A system of systems model for the control of the university of Genoa Smart Polygeneration Microgrid. , 2012, , .		14
42	A Building Energy Management System Based on an Equivalent Electric Circuit Model. Energies, 2020, 13, 1689.	3.1	14
43	On the Computation of underground Electromagnetic Fields Generated by Lightning: A Comparison between Different Approaches. , 2007, , .		13
44	Distributed control for polygeneration microgrids: A Dynamic Market Mechanism approach. Control Engineering Practice, 2022, 121, 105052.	5.5	13
45	An identification procedure for lightning return strokes. Journal of Electrostatics, 2001, 51-52, 326-332.	1.9	12
46	The Smart City Energy infrastructures at the Savona Campus of the University of Genoa. , 2016, , .		12
47	Lightning current identification over a conducting ground plane. Radio Science, 2003, 38, n/a-n/a.	1.6	11
48	Numerical calculation of total force upon permanent magnets using equivalent source methods. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2001, 20, 431-447.	0.9	10
49	A Dynamic Market Mechanism for Combined Heat and Power Microgrid Energy Management. IFAC-PapersOnLine, 2017, 50, 10033-10039.	0.9	10
50	A flexible test-bed pilot facility for the analysis and simulation of Smart Microgrids. , 2019, , .		10
51	Electric Vehicles and Storage Systems Integrated within a Sustainable Urban District Fed by Solar Energy. Journal of Advanced Transportation, 2019, 2019, 1-19.	1.7	10
52	Simulation and design of a large thermal storage system: Real data analysis of a smart polygeneration micro grid system. Applied Thermal Engineering, 2022, 201, 117789.	6.0	10
53	An approximate methodology to verify the compliance of large photovoltaic power plants to system operator steady-state requirements. Electric Power Systems Research, 2015, 127, 80-92.	3.6	9
54	Smart microgrids in smart campuses with electric vehicles and storage systems: Analysis of possible operating scenarios. , 2016, , .		9

4

FEDERICO DELFINO

#	Article	IF	CITATIONS
55	High-Frequency EHV/HV Autotransformer Model Identification From LEMP Test Data. IEEE Transactions on Power Delivery, 2011, 26, 714-724.	4.3	8
56	Smart microgrid monitoring: Evaluation of key performance indicators for a PV plant connected to a LV microgrid. , 2017, , .		8
57	An Optimization Model for Polygeneration Microgrids with Renewables, Electrical and Thermal Storage: Application to the Savona Campus. , 2018, , .		8
58	Electricity Spot Prices Forecasting for MIBEL by using Deep Learning: a comparison between NAR, NARX and LSTM networks. , 2020, , .		8
59	V2G technology to mitigate PV uncertainties. , 2020, , .		8
60	An Equivalent Two-Port Model for a Transmission Line of Finite Length Accounting for High-Frequency Effects. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 1657-1665.	2.2	7
61	Hydrogen as an energy vector to optimize the energy exploitation of a self-consumption solar photovoltaic facility in a dwelling house. Energy Reports, 2020, 6, 155-166.	5.1	7
62	Analytical Expressions for Lightning Electromagnetic Fields With Arbitrary Channel-Base Current. Part II: Validation and Computational Performance. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 534-541.	2.2	7
63	A Methodology to Reduce the Computational Effort in the Evaluation of the Lightning Performance of Distribution Networks. Atmosphere, 2016, 7, 147.	2.3	6
64	Photovoltaic Generating Units as Reactive Supply Ancillary Service Providers. International Journal of Emerging Electric Power Systems, 2008, 9, .	0.8	5
65	A new method for the solution of convolution-type dual integral-equation systems occurring in engineering electromagnetics. Journal of Engineering Mathematics, 2009, 63, 51-59.	1.2	5
66	Optimal planning of the energy production mix in smart districts including renewable and cogeneration power plants. , 2016, , .		5
67	Nanogrids with Renewable Sources, Electrical Storage and Vehicle-to-Home Systems in the Household Sector: Analysis for a Single-Family Dwelling. , 2019, , .		5
68	A fullâ€Maxwell algorithm for the fieldâ€ŧoâ€multiconductor lineâ€coupling problem. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2003, 22, 789-805.	0.9	4
69	Sustainable electric mobility analysis in the Savona Campus of the University of Genoa. , 2016, , .		4
70	Distributed optimal power flow for islanded microgrids: An application to the Smart Polygeneration Microgrid of the Genoa University. , 2016, , .		4
71	A model predictive control approach for the optimization of polygeneration microgrids and demand response strategies. , 2016, , .		4
72	Electric vehicle use in public fleets: The case of the Genoa University. , 2017, , .		4

Federico Delfino

#	Article	IF	CITATIONS
73	Evaluating LCOE in sustainable microgrids for smart city applications. E3S Web of Conferences, 2019, 113, 03006.	0.5	4
74	E-Mobility & Microgrid Laboratory at the Savona Campus of Genova University. , 2020, , .		4
75	Supply-side gaming on electricity markets with physical constrained transmission network. , 2008, , .		3
76	A regularization approach for high-frequency electromagnetic field-to-line coupling analysis. Inverse Problems, 2012, 28, 095001.	2.0	3
77	Optimal thermal power production by means of an equivalent electric circuit for a thermal network: The Savona Campus Smart Polygeneration Microgrid case. , 2016, , .		3
78	Flexibility Services Based on OpenADR Protocol for DSO Level. Sensors, 2020, 20, 6266.	3.8	3
79	On the participation of small-scale high performance combined heat and power plants to the Italian ancillary services market within Virtually Aggregated Mixed Units. Energy, 2022, 239, 122275.	8.8	3
80	Assessment of the Lightning Performance of overhead distribution lines based on Lightning Location Systems data. International Journal of Electrical Power and Energy Systems, 2022, 142, 108230.	5.5	3
81	The Use of a Static Series Compensator (SSC) for the Mitigation of Voltage Sags in a Radial Distribution Network. , 2007, , .		2
82	Optimal control of active power flows in Smart Microgrids. , 2014, , .		2
83	An equivalent electric circuit for the thermal Network of the Savona Campus Smart Polygeneration Microgrid. , 2015, , .		2
84	Definition and Experimental Validation of a Simplified Model for a Microgrid Thermal Network and its Integration into Energy Management Systems. Energies, 2016, 9, 914.	3.1	2
85	The University of Genoa Smart City Demo Site. , 2018, , .		2
86	On the integration of solar PV and storage batteries within a microgrid. , 2019, , .		2
87	Smart Charging of Electric Vehicles to Minimize Renewable Power Curtailment in Polygeneration Prosumer Buildings. , 2020, , .		2
88	Lightning-Induced Overvoltage Peaks Considering Soil Parameters Frequency-Dependence: New Approach with Dominant Frequency Associated with Lightning Current Front Time. , 2022, , .		2
89	Performance and control of PhotoVoltaic systems supplying both primary and ancillary services. , 2008, , .		1
90	Rational approximation for the time domain implementation of Cooray-Rubinstein formula. , 2011, , .		1

FEDERICO DELFINO

#	Article	IF	CITATIONS
91	A Multilevel Approach for the Optimal Control of Energy Systems Distributed over the Territory. , 2013, , .		1
92	Energy management in hybrid systems coupling PV and electrical storage. , 2015, , .		1
93	The role of high efficiency trigeneration plants within sustainable smart microgrids: Performance analysis and experimental tests. , 2015, , .		1
94	A two-step procedure for the energy management in smart microgrids accounting for economical and power quality issues. , 2015, , .		1
95	A multi-objective optimization tool for the daily management of sustainable smart microgrids: Case Study: the savona campus SPM and SEB facilities. , 2016, , .		1
96	Regularization techniques for the high-frequency electromagnetic field coupling problem with terminated lines. Journal of Engineering Mathematics, 2016, 96, 73-93.	1.2	1
97	A Methodological Approach to Assess the Impact of Smarting Action on Electricity Transmission and Distribution Networks Related to Europe 2020 Targets. Energies, 2017, 10, 155.	3.1	1
98	Design of a sustainable polygeneration microgrid for the retrofitting of an industrial site: Ansaldo Energia case study. E3S Web of Conferences, 2019, 113, 03009.	0.5	1
99	A Review of Lightning Location Systems: Part I-Methodologies and Techniques. , 2020, , .		1
100	Short-Term Power Forecasting Framework for Microgrids Using Combined Baseline and Regression Models. Applied Sciences (Switzerland), 2021, 11, 6420.	2.5	1
101	The University of Genoa Savona Campus Sustainability Projects. , 2021, , .		1
102	Application to Real Case Studies. SpringerBriefs in Applied Sciences and Technology, 2022, , 77-120.	0.4	1
103	The use of the regularization theory for the analysis of the field-to-line coupling problem. , 2012, , .		0
104	Planning and Management of Distributed Energy Resources and Loads in a Smart Microgrid. International Journal of Monitoring and Surveillance Technologies Research, 2014, 2, 41-57.	0.3	0
105	A semi-analytical formula for the evaluation of the indirect lightning performance of overhead power lines. , 2014, , .		0
106	Development and assessment of Decentralized Energy Management System in a smart Microgrid. , 2014, , , .		0
107	A simple strategy to optimally design and manage a photovoltaic plant integrated with a storage system for different applications. , 2017, , .		0
108	Decentralized generation in urban districts: Optimal planning considering uncertainties. , 2017, , .		0

#	Article	IF	CITATIONS
109	Electromagnetic Transients on Power Plant Connection Caused by Lightning Event. , 2021, , .		о
110	On the Enhancement of the Flashovers on Overhead Distribution Lines Considering the Corona Discharge. , 2021, , .		0
111	Lightning electromagnetic field calculations in presence of a conducting ground: the numerical treatment of Sommerfeld's integrals. , 2012, , 515-565.		0
112	Lightning-induced Voltages on Overhead Distribution Lines Computed through Analytical Expressions for the Electromagnetic Fields. , 2021, , .		0