José Manuel Bruno-BÃ;rcena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8558269/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer?. American Journal of Physiology - Renal Physiology, 2011, 301, G401-G424.	3.4	201
2	Anti-inflammatory properties of <i>Lactobacillus gasseri</i> expressing manganese superoxide dismutase using the interleukin 10-deficient mouse model of colitis. American Journal of Physiology - Renal Physiology, 2007, 293, G729-G738.	3.4	175
3	Expression of a Heterologous Manganese Superoxide Dismutase Gene in Intestinal Lactobacilli Provides Protection against Hydrogen Peroxide Toxicity. Applied and Environmental Microbiology, 2004, 70, 4702-4710.	3.1	102
4	Galacto-oligosaccharides and colorectal cancer: Feeding our intestinal probiome. Journal of Functional Foods, 2015, 12, 92-108.	3.4	92
5	High purity galacto-oligosaccharides enhance specific Bifidobacterium species and their metabolic activity in the mouse gut microbiome. Beneficial Microbes, 2016, 7, 247-264.	2.4	85
6	Transcriptional and Functional Analysis of Oxalyl-Coenzyme A (CoA) Decarboxylase and Formyl-CoA Transferase Genes from Lactobacillus acidophilus. Applied and Environmental Microbiology, 2006, 72, 1891-1899.	3.1	75
7	Role of Antioxidant Enzymes in Bacterial Resistance to Organic Acids. Applied and Environmental Microbiology, 2010, 76, 2747-2753.	3.1	75
8	Monitoring Stress-Related Genes during the Process of Biomass Propagation of Saccharomyces cerevisiae Strains Used for Wine Making. Applied and Environmental Microbiology, 2005, 71, 6831-6837.	3.1	60
9	Azotobacter vinelandii: the source of 100 years of discoveries and many more to come. Microbiology (United Kingdom), 2018, 164, 421-436.	1.8	53
10	Continuous production of l (+)-lactic acid by Lactobacillus casei in two-stage systems. Applied Microbiology and Biotechnology, 1999, 51, 316-324.	3.6	46
11	Meta-Analysis and Functional Validation of Nutritional Requirements of Solventogenic Clostridia Growing under Butanol Stress Conditions and Coutilization of <scp>d</scp> -Glucose and <scp>d</scp> -Xylose. Applied and Environmental Microbiology, 2011, 77, 4473-4485.	3.1	43
12	The pleiotropic effects of prebiotic galacto-oligosaccharides on the aging gut. Microbiome, 2021, 9, 31.	11.1	43
13	Sequence data for Clostridium autoethanogenum using three generations of sequencing technologies. Scientific Data, 2015, 2, 150014.	5.3	40
14	Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients, 2018, 10, 1517.	4.1	36
15	Chemostat Production of Plantaricin C By <i>Lactobacillus plantarum</i> LL441. Applied and Environmental Microbiology, 1998, 64, 3512-3514.	3.1	31
16	Marker-free chromosomal integration of the manganese superoxide dismutase gene (sodA) fromStreptococcus thermophilusintoLactobacillus gasseri. FEMS Microbiology Letters, 2005, 246, 91-101.	1.8	28
17	Cell Immobilization for Production of Lactic Acid. Advances in Applied Microbiology, 2010, 71, 113-148.	2.4	28
18	Genome Sequence of the Autotrophic Acetogen <i>Clostridium autoethanogenum</i> JA1-1 Strain DSM 10061, a Producer of Ethanol from Carbon Monoxide. Genome Announcements, 2013, 1, .	0.8	24

#	Article	IF	CITATIONS
19	Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6. Applied and Environmental Microbiology, 2015, 81, 4507-4516.	3.1	23
20	Inoculum optimization of <i>Clostridium beijerinckii</i> for reproducible growth. FEMS Microbiology Letters, 2015, 362, fnv164.	1.8	18
21	Fluidized bed ion exchange for improving purification of lactic acid from fermentation. Biotechnology Letters, 1999, 13, 201-205.	0.5	17
22	Comparative phenotypic analysis and genome sequence of Clostridium beijerinckii SA-1, an offspring of NCIMB 8052. Microbiology (United Kingdom), 2013, 159, 2558-2570.	1.8	17
23	Evidence of mixotrophic carbon-capture by n-butanol-producer Clostridium beijerinckii. Scientific Reports, 2017, 7, 12759.	3.3	17
24	Influence of the intestinal microbiota on disease susceptibility in kittens with experimentally-induced carriage of atypical enteropathogenic Escherichia coli. Veterinary Microbiology, 2019, 231, 197-206.	1.9	15
25	Use of unconventional mixed Acetone-Butanol-Ethanol solvents for anthocyanin extraction from Purple-Fleshed sweetpotatoes. Food Chemistry, 2020, 314, 125959.	8.2	14
26	Heterologous Expression of a Bioactive β-Hexosyltransferase, an Enzyme Producer of Prebiotics, from Sporobolomyces singularis. Applied and Environmental Microbiology, 2013, 79, 1241-1249.	3.1	13
27	Complete Genome Sequences of Azotobacter vinelandii Wild-Type Strain CA and Tungsten-Tolerant Mutant Strain CA6. Genome Announcements, 2013, 1, .	0.8	12
28	Azotobacter vinelandii Nitrogenase Activity, Hydrogen Production, and Response to Oxygen Exposure. Applied and Environmental Microbiology, 2018, 84, .	3.1	12
29	A closed loop exponential feeding law: Invariance and global stability analysis. Journal of Process Control, 2006, 16, 395-402.	3.3	10
30	Safety and Modulatory Effects of Humanized Galacto-Oligosaccharides on the Gut Microbiome. Frontiers in Nutrition, 2021, 8, 640100.	3.7	9
31	Production and Conservation of Starter Cultures: From "Backslopping―to Controlled Fermentations. , 2019, , 125-138.		9
32	Shifts in pH affect the maltose/glycerol co-fermentation by Lactobacillus reuteri. Biotechnology Letters, 1997, 19, 645-649.	2.2	8
33	Characterization of Clostridium ljungdahlii OTA1: a non-autotrophic hyper ethanol-producing strain. Applied Microbiology and Biotechnology, 2017, 101, 1615-1630.	3.6	7
34	Complete Genome Sequence of Solvent-Tolerant Clostridium beijerinckii Strain SA-1. Genome Announcements, 2014, 2, .	0.8	6
35	Protons and pleomorphs: aerobic hydrogen production in Azotobacters. World Journal of Microbiology and Biotechnology, 2016, 32, 29.	3.6	6
36	A novel N-terminal region of the membrane β-hexosyltransferase: its role in secretion of soluble protein by Pichia pastoris. Microbiology (United Kingdom), 2016, 162, 23-34.	1.8	5

#	ARTICLE	IF	CITATIONS
37	pH regulation of enzyme production in Aspergillus nidulans growing in aerobic batch fermenter. Biotechnology Letters, 2002, 24, 567-572.	2.2	3
38	An iterative approach to improve xylose consumption by Clostridium autoethanogenum: From substrate concentration to pH adjustment. Biomass and Bioenergy, 2020, 140, 105663.	5.7	3
39	Regular Paper. Biotechnology Letters, 1998, 12, 97-99.	0.5	2
40	Accelerated Biodegradation of the Agrochemical Ametoctradin by Soil-Derived Microbial Consortia. Frontiers in Microbiology, 2020, 11, 1898.	3.5	2
41	Two-Stage Continuous Conversion of Carbon Monoxide to Ethylene by Whole Cells of Azotobacter vinelandii. Applied and Environmental Microbiology, 2020, 86, .	3.1	2
42	Microbial Physiology Applied to Process Optimisation: Lactic Acid Bacteria. , 1998, , 97-110.		2
43	Biology of Reactive Oxygen Species, Oxidative Stress, and Antioxidants in Lactic Acid Bacteria. , 2015, , 205-218.		1
44	Draft Genome Sequence of Lactobacillus rhamnosus NCB 441, Isolated from Egyptian White Domiati Cheese. Microbiology Resource Announcements, 2020, 9, .	0.6	0