Leandro J Bertoglio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8558252/publications.pdf

Version: 2024-02-01

		249298	223390
54	2,775	26	49
papers	2,775 citations	h-index	g-index
55	55	55	3150
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Interactions of Noradrenergic, Glucocorticoid and Endocannabinoid Systems Intensify and Generalize Fear Memory Traces. Neuroscience, 2022, 497, 118-133.	1.1	9
2	Medial prefrontal cortex mechanisms of cannabidiol-induced aversive memory reconsolidation impairments. Neuropharmacology, 2022, 205, 108913.	2.0	13
3	Nucleus reuniens of the thalamus controls fear memory reconsolidation. Neurobiology of Learning and Memory, 2021, 177, 107343.	1.0	13
4	Female but not male rats show biphasic effects of low doses of î"9-tetrahydrocannabinol on anxiety: can cannabidiol interfere with these effects?. Neuropharmacology, 2021, 196, 108684.	2.0	16
5	Dexamethasone impairs encoding and expression of aversive conditioning promoted by pentylenetetrazole. Behavioural Pharmacology, 2020, 31, 435-447.	0.8	O
6	A timeâ€dependent contribution of hippocampal CB ₁ , CB ₂ and PPARγ receptors to cannabidiolâ€induced disruption of fear memory consolidation. British Journal of Pharmacology, 2020, 177, 945-957.	2.7	29
7	Infralimbic cortex controls fear memory generalization and susceptibility to extinction during consolidation. Scientific Reports, 2020, 10, 15827.	1.6	25
8	A single dose of the organophosphate triazophos induces fear extinction deficits accompanied by hippocampal acetylcholinesterase inhibition. Neurotoxicology and Teratology, 2020, 82, 106929.	1.2	3
9	Taking advantage of fear generalization-associated destabilization to attenuate the underlying memory via reconsolidation intervention. Neuropharmacology, 2020, 181, 108338.	2.0	4
10	Thalamic nucleus reuniens regulates fear memory destabilization upon retrieval. Neurobiology of Learning and Memory, 2020, 175, 107313.	1.0	12
11	Effects of â^†9-tetrahydrocannabinol on aversive memories and anxiety: a review from human studies. BMC Psychiatry, 2020, 20, 420.	1.1	23
12	Role of prelimbic cortex PKC and PKMζ in fear memory reconsolidation and persistence following reactivation. Scientific Reports, 2020, 10, 4076.	1.6	18
13	Dissociating retrieval-dependent contextual aversive memory processes in female rats: Are there cycle-dependent differences?. Neuroscience, 2019, 406, 542-553.	1.1	18
14	Tempering aversive/traumatic memories with cannabinoids: a review of evidence from animal and human studies. Psychopharmacology, 2019, 236, 201-226.	1.5	42
15	Role of dorsal hippocampus \hat{I}^{ϱ} opioid receptors in contextual aversive memory consolidation in rats. Neuropharmacology, 2018, 135, 253-267.	2.0	11
16	Effects of Cannabinoid Drugs on Aversive or Rewarding Drug-Associated Memory Extinction and Reconsolidation. Neuroscience, 2018, 370, 62-80.	1.1	39
17	Nucleus reuniens of the thalamus controls fear memory intensity, specificity and longâ€ŧerm maintenance during consolidation. Hippocampus, 2018, 28, 602-616.	0.9	42
18	Cannabidiol regulation of emotion and emotional memory processing: relevance for treating anxietyâ€related and substance abuse disorders. British Journal of Pharmacology, 2017, 174, 3242-3256.	2.7	114

#	Article	IF	CITATIONS
19	Newly acquired and reactivated contextual fear memories are more intense and prone to generalize after activation of prelimbic cortex NMDA receptors. Neurobiology of Learning and Memory, 2017, 137, 154-162.	1.0	28
20	Cannabidiol disrupts the consolidation of specific and generalized fear memories via dorsal hippocampus CB1 and CB2 receptors. Neuropharmacology, 2017, 125, 220-230.	2.0	69
21	Role of the Endocannabinoid System and Major Cannabis Constituents in the Reconsolidation and Extinction of Rewarding Drug-Associated Memories. , 2016, , 804-814.		1
22	Overview of Cannabis Use, Misuse, and Addiction., 2016,, 665-671.		0
23	Cannabidiol Regulation of Learned Fear: Implications for Treating Anxiety-Related Disorders. Frontiers in Pharmacology, 2016, 7, 454.	1.6	51
24	Anandamide reverses depressive-like behavior, neurochemical abnormalities and oxidative-stress parameters in streptozotocin-diabetic rats: Role of CB1 receptors. European Neuropsychopharmacology, 2016, 26, 1590-1600.	0.3	32
25	Evidence for an expanded time-window to mitigate a reactivated fear memory by tamoxifen. European Neuropsychopharmacology, 2016, 26, 1601-1609.	0.3	16
26	Animal Tests for Anxiety. , 2016, , 313-326.		1
27	Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats. Behavioural Brain Research, 2016, 301, 43-54.	1.2	27
28	Temporal Dissociation of Striatum and Prefrontal Cortex Uncouples Anhedonia and Defense Behaviors Relevant to Depression in 6-OHDA-Lesioned Rats. Molecular Neurobiology, 2016, 53, 3891-3899.	1.9	29
29	PTSD-Like Memory Generated Through Enhanced Noradrenergic Activity is Mitigated by a Dual Step Pharmacological Intervention Targeting its Reconsolidation. International Journal of Neuropsychopharmacology, 2015, 18, pyu026-pyu026.	1.0	67
30	î"-Tetrahydrocannabinol alone and combined with cannabidiol mitigate fear memory through reconsolidation disruption. European Neuropsychopharmacology, 2015, 25, 958-965.	0.3	62
31	Activity in prelimbic cortex subserves fear memory reconsolidation over time. Learning and Memory, 2014, 21, 14-20.	0.5	44
32	Elevated Plus Maze., 2014, , 1-5.		1
33	Enhanced noradrenergic activity potentiates fear memory consolidation and reconsolidation by differentially recruiting $\hat{l}\pm 1$ - and \hat{l}^2 -adrenergic receptors. Learning and Memory, 2013, 20, 210-219.	0.5	93
34	On Disruption of Fear Memory by Reconsolidation Blockade: Evidence from Cannabidiol Treatment. Neuropsychopharmacology, 2012, 37, 2132-2142.	2.8	136
35	Protein synthesis in dorsal hippocampus supports the drug tolerance induced by prior elevated plus-maze experience. Neuroscience, 2011, 179, 179-187.	1.1	6
36	Activity in prelimbic cortex is required for adjusting the anxiety response level during the elevated plus-maze retest. Neuroscience, 2010, 170, 214-222.	1.1	57

#	Article	lF	CITATIONS
37	Neuroanatomy of Anxiety. Current Topics in Behavioral Neurosciences, 2009, 2, 77-96.	0.8	93
38	Pentylenetetrazole as an unconditioned stimulus for olfactory and contextual fear conditioning in rats. Neurobiology of Learning and Memory, 2009, 92, 512-518.	1.0	18
39	Aversive learning as a mechanism for lack of repeated anxiolytic-like effect in the elevated plus-maze. Pharmacology Biochemistry and Behavior, 2008, 90, 545-550.	1.3	29
40	Interplay between glutamate and serotonin within the dorsal periaqueductal gray modulates anxiety-related behavior of rats exposed to the elevated plus-maze. Behavioural Brain Research, 2008, 194, 181-186.	1.2	22
41	Attenuation of anxiety-related behaviour after the antagonism of transient receptor potential vanilloid type 1 channels in the rat ventral hippocampus. Behavioural Pharmacology, 2008, 19, 357-360.	0.8	51
42	Cholecystokinin-2 receptors modulate freezing and escape behaviors evoked by the electrical stimulation of the rat dorsolateral periaqueductal gray. Brain Research, 2007, 1156, 133-138.	1.1	14
43	Further evidence that anxiety and memory are regionally dissociated within the hippocampus. Behavioural Brain Research, 2006, 175, 183-188.	1.2	104
44	Lack of interaction between NMDA and cholecystokinin-2 receptor-mediated neurotransmission in the dorsolateral periaqueductal gray in the regulation of rat defensive behaviors. Life Sciences, 2006, 79, 2238-2244.	2.0	4
45	Involvement of dorsolateral periaqueductal gray N-methyl-D-aspartic acid glutamate receptors in the regulation of risk assessment and inhibitory avoidance behaviors in the rat elevated T-maze. Behavioural Pharmacology, 2006, 17, 589-596.	0.8	23
46	Involvement of dorsolateral periaqueductal gray cholecystokinin-2 receptors in the regulation of a panic-related behavior in rats. Brain Research, 2005, 1059, 46-51.	1.1	27
47	Ethological and temporal analyses of anxiety-like behavior: The elevated plus-maze model 20 years on. Neuroscience and Biobehavioral Reviews, 2005, 29, 1193-1205.	2.9	788
48	Enhanced dorsolateral periaqueductal gray activity counteracts the anxiolytic response to midazolam on the elevated plus-maze Trial 2 in rats. Behavioural Brain Research, 2005, 162, 99-107.	1.2	22
49	Scopolamine given pre-Trial 1 prevents the one-trial tolerance phenomenon in the elevated plus-maze Trial 2. Behavioural Pharmacology, 2004, 15, 45-54.	0.8	40
50	Anxiolytic-like effects of NMDA/glycine-B receptor ligands are abolished during the elevated plus-maze trial 2 in rats. Psychopharmacology, 2003, 170, 335-342.	1.5	39
51	Behavioral profile of rats submitted to session 1-session 2 in the elevated plus-maze during diurnal/nocturnal phases and under different illumination conditions. Behavioural Brain Research, 2002, 132, 135-143.	1.2	92
52	Prior maze experience required to alter midazolam effects in rats submitted to the elevated plus-maze. Pharmacology Biochemistry and Behavior, 2002, 72, 449-455.	1.3	59
53	Anxiolytic effects of ethanol and phenobarbital are abolished in test-experienced rats submitted to the elevated plus maze. Pharmacology Biochemistry and Behavior, 2002, 73, 963-969.	1.3	61
54	Previous maze experience required to increase open arms avoidance in rats submitted to the elevated plus-maze model of anxiety. Behavioural Brain Research, 2000, 108, 197-203.	1.2	138