
Erin M Rock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8557928/publications.pdf Version: 2024-02-01

FRIN M ROCK

#	Article	IF	CITATIONS
1	Cannabidiol Interferes with Establishment of Δ ⁹ -Tetrahydrocannabinol-Induced Nausea Through a 5-HT _{1A} Mechanism. Cannabis and Cannabinoid Research, 2022, 7, 58-64.	2.9	3
2	Effect of oleoyl glycine and oleoyl alanine on lithium chloride induced nausea in rats and vomiting in shrews. Psychopharmacology, 2022, 239, 377-383.	3.1	2
3	Short communication: Tissue distribution of major cannabinoids following intraperitoneal injection in male rats. PLoS ONE, 2022, 17, e0262633.	2.5	6
4	N-Oleoylglycine and N-Oleoylalanine Do Not Modify Tolerance to Nociception, Hyperthermia, and Suppression of Activity Produced by Morphine. Frontiers in Synaptic Neuroscience, 2021, 13, 620145.	2.5	5
5	Therapeutic Potential of Cannabidiol, Cannabidiolic Acid, and Cannabidiolic Acid Methyl Ester as Treatments for Nausea and Vomiting. Cannabis and Cannabinoid Research, 2021, 6, 266-274.	2.9	15
6	Spontaneous and Naloxone-Precipitated Withdrawal Behaviors From Chronic Opiates are Accompanied by Changes in N-Oleoylglycine and N-Oleoylalanine Levels in the Brain and Ameliorated by Treatment With These Mediators. Frontiers in Pharmacology, 2021, 12, 706703.	3.5	9
7	Constituents of Cannabis Sativa. Advances in Experimental Medicine and Biology, 2021, 1264, 1-13.	1.6	40
8	Acute naloxone-precipitated morphine withdrawal elicits nausea-like somatic behaviors in rats in a manner suppressed by N-oleoylglycine. Psychopharmacology, 2020, 237, 375-384.	3.1	12
9	Effect of combined doses of Δ9-tetrahydrocannabinol and cannabidiol or tetrahydrocannabinolic acid and cannabidiolic acid on acute nausea in male Sprague-Dawley rats. Psychopharmacology, 2020, 237, 901-914.	3.1	12
10	Evaluation of repeated or acute treatment with cannabidiol (CBD), cannabidiolic acid (CBDA) or CBDA methyl ester (HU-580) on nausea and/or vomiting in rats and shrews. Psychopharmacology, 2020, 237, 2621-2631.	3.1	18
11	Role of the stress response and the endocannabinoid system in Δ9-tetrahydrocannabinol (THC)-induced nausea. Psychopharmacology, 2020, 237, 2187-2199.	3.1	9
12	Oleoyl alanine (HU595): a stable monomethylated oleoyl glycine interferes with acute naloxone precipitated morphine withdrawal in male rats. Psychopharmacology, 2020, 237, 2753-2765.	3.1	11
13	Nausea-Induced Conditioned Gaping Reactions in Rats Produced by High-Dose Synthetic Cannabinoid, JWH-018. Cannabis and Cannabinoid Research, 2020, 5, 298-304.	2.9	6
14	A study of limbic brain derived neurotrophic factor gene expression in male Sprague-Dawley rats trained on a learned helplessness task. Behavioural Brain Research, 2019, 376, 112174.	2.2	2
15	The ventral pallidum as a critical region for fatty acid amide hydrolase inhibition of nausea-induced conditioned gaping in male Sprague-Dawley rats. Neuropharmacology, 2019, 155, 142-149.	4.1	6
16	Oleoyl glycine: interference with the aversive effects of acute naloxone-precipitated MWD, but not morphine reward, in male Sprague–Dawley rats. Psychopharmacology, 2019, 236, 2623-2633.	3.1	12
17	Cannabidiolic acid methyl ester, a stable synthetic analogue of cannabidiolic acid, can produce 5â€HT _{1A} receptorâ€mediated suppression of nausea and anxiety in rats. British Journal of Pharmacology, 2018, 175, 100-112.	5.4	53
18	Conditioned aversive responses produced by delayed, but not immediate, exposure to cocaine and morphine in male Sprague-Dawley rats. Psychopharmacology, 2018, 235, 3315-3327.	3.1	2

Erin M Rock

#	Article	IF	CITATIONS
19	Effect of cannabidiolic acid and â^†9-tetrahydrocannabinol on carrageenan-induced hyperalgesia and edema in a rodent model of inflammatory pain. Psychopharmacology, 2018, 235, 3259-3271.	3.1	74
20	Conditioned gaping produced by high dose Δ9-tetrahydracannabinol: Dysregulation of the hypothalamic endocannabinoid system. Neuropharmacology, 2018, 141, 272-282.	4.1	11
21	Nausea-Induced 5-HT Release in the Interoceptive Insular Cortex and Regulation by Monoacylglycerol Lipase (MAGL) Inhibition and Cannabidiol. ENeuro, 2018, 5, ENEURO.0256-18.2018.	1.9	27
22	Effect of prior foot shock stress and î"9-tetrahydrocannabinol, cannabidiolic acid, and cannabidiol on anxiety-like responding in the light-dark emergence test in rats. Psychopharmacology, 2017, 234, 2207-2217.	3.1	53
23	Suppression of acute and anticipatory nausea by peripherally restricted fatty acid amide hydrolase inhibitor in animal models: role of PPARα and CB ₁ receptors. British Journal of Pharmacology, 2017, 174, 3837-3847.	5.4	17
24	Cannabinoids As Potential Treatment for Chemotherapy-Induced Nausea and Vomiting. Frontiers in Pharmacology, 2016, 7, 221.	3.5	37
25	Cannabinoid Regulation of Acute and Anticipatory Nausea. Cannabis and Cannabinoid Research, 2016, 1, 113-121.	2.9	17
26	Elevation of 2-AG by monoacylglycerol lipase inhibition in the visceral insular cortex interferes with anticipatory nausea in a rat model Behavioral Neuroscience, 2016, 130, 261-266.	1.2	10
27	Effect of combined oral doses of Δ9-tetrahydrocannabinol (THC) and cannabidiolic acid (CBDA) on acute and anticipatory nausea in rat models. Psychopharmacology, 2016, 233, 3353-3360.	3.1	17
28	A comparison of novel, selective fatty acid amide hydrolase (FAAH), monoacyglycerol lipase (MAGL) or dual FAAH/MAGL inhibitors to suppress acute and anticipatory nausea in rat models. Psychopharmacology, 2016, 233, 2265-2275.	3.1	17
29	Cannabinoid 2 (CB 2) receptor agonism reduces lithium chloride-induced vomiting in Suncus murinus and nausea-induced conditioned gaping in rats. European Journal of Pharmacology, 2016, 786, 94-99.	3.5	10
30	Double Dissociation of Monoacylglycerol Lipase Inhibition and CB1 Antagonism in the Central Amygdala, Basolateral Amygdala, and the Interoceptive Insular Cortex on the Affective Properties of Acute Naloxone-Precipitated Morphine Withdrawal in Rats. Neuropsychopharmacology, 2016, 41, 1865-1873.	5.4	18
31	Endocannabinoid Mechanisms Influencing Nausea. International Review of Neurobiology, 2015, 125, 127-162.	2.0	15
32	Effect of selective inhibition of monoacylglycerol lipase (MAGL) on acute nausea, anticipatory nausea, and vomiting in rats and Suncus murinus. Psychopharmacology, 2015, 232, 583-593.	3.1	24
33	Synergy between cannabidiol, cannabidiolic acid, and Δâ‡-tetrahydrocannabinol in the regulation of emesis in the Suncus murinus (house musk shrew) Behavioral Neuroscience, 2015, 129, 368-370.	1.2	22
34	Effect of combined doses of Δ9-tetrahydrocannabinol (THC) and cannabidiolic acid (CBDA) on acute and anticipatory nausea using rat (Sprague- Dawley) models of conditioned gaping. Psychopharmacology, 2015, 232, 4445-4454.	3.1	26
35	Interference with acute nausea and anticipatory nausea in rats by fatty acid amide hydrolase (FAAH) inhibition through a PPARα and CB1 receptor mechanism, respectively: a double dissociation. Psychopharmacology, 2015, 232, 3841-3848.	3.1	26
36	Attenuation of anticipatory nausea in a rat model of contextually elicited conditioned gaping by enhancement of the endocannabinoid system. Psychopharmacology, 2014, 231, 603-612.	3.1	17

Erin M Rock

#	Article	IF	CITATIONS
37	A comparison of cannabidiolic acid with other treatments for anticipatory nausea using a rat model of contextually elicited conditioned gaping. Psychopharmacology, 2014, 231, 3207-3215.	3.1	36
38	Anticipatory nausea in animal models: a review of potential novel therapeutic treatments. Experimental Brain Research, 2014, 232, 2511-2534.	1.5	19
39	Effect of chronic exposure to rimonabant and phytocannabinoids on anxiety-like behavior and saccharin palatability. Pharmacology Biochemistry and Behavior, 2013, 103, 597-602.	2.9	51
40	Evaluation of the potential of the phytocannabinoids, cannabidivarin (<scp>CBDV</scp>) and Δ ⁹ â€tetrahydrocannabivarin (<scp>THCV</scp>), to produce <scp>CB₁</scp> receptor inverse agonism symptoms of nausea in rats. British Journal of Pharmacology, 2013, 170, 671-678.	5.4	28
41	Inhibition of monoacylglycerol lipase attenuates vomiting in <i>Suncus murinus</i> and 2â€arachidonoyl glycerol attenuates nausea in rats. British Journal of Pharmacology, 2012, 165, 2425-2435.	5.4	49
42	Regulation of nausea and vomiting by cannabinoids. British Journal of Pharmacology, 2011, 163, 1411-1422.	5.4	195
43	Interaction between non-psychotropic cannabinoids in marihuana: effect of cannabigerol (CBG) on the anti-nausea or anti-emetic effects of cannabidiol (CBD) in rats and shrews. Psychopharmacology, 2011, 215, 505-512.	3.1	72
44	Potential of the rat model of conditioned gaping to detect nausea produced by rolipram, a phosphodiesterase-4 (PDE4) inhibitor. Pharmacology Biochemistry and Behavior, 2009, 91, 537-541.	2.9	26
45	The effect of cannabidiol and URB597 on conditioned gaping (a model of nausea) elicited by a lithium-paired context in the rat. Psychopharmacology, 2008, 196, 389-395.	3.1	67