Jinglan Kan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8557693/publications.pdf

Version: 2024-02-01

840776 794594 20 601 11 19 h-index citations g-index papers 21 21 21 720 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Highâ€Performance Airâ€Stable Ambipolar Organic Fieldâ€Effect Transistor Based on Tris(phthalocyaninato) Europium(III). Advanced Materials, 2012, 24, 1755-1758.	21.0	111
2	A microporous hydrogen-bonded organic framework with amine sites for selective recognition of small molecules. Journal of Materials Chemistry A, 2017, 5, 8292-8296.	10.3	78
3	Sandwich-Type Mixed Tetrapyrrole Rare-Earth Triple-Decker Compounds. Effect of the Coordination Geometry on the Single-Molecule-Magnet Nature. Inorganic Chemistry, 2013, 52, 8505-8510.	4.0	77
4	Facile preparation and application of luminescent cucurbit[10]uril-based porous supramolecular frameworks. Sensors and Actuators B: Chemical, 2019, 283, 290-297.	7.8	53
5	H-aggregation mode in triple-decker phthalocyaninato-europium semiconductors. Materials design for high-performance air-stable ambipolar organic thin film transistors. Organic Electronics, 2013, 14, 2582-2589.	2.6	46
6	The first solution-processable n-type phthalocyaninato copper semiconductor: tuning the semiconducting nature via peripheral electron-withdrawing octyloxycarbonyl substituents. Journal of Materials Chemistry, 2011, 21, 18552.	6.7	44
7	Sandwich-type tetrakis(phthalocyaninato) rare earth(iii)–cadmium(ii) quadruple-deckers. The effect of f-electrons. Dalton Transactions, 2013, 42, 1109-1115.	3.3	29
8	Synthesis, self-assembly, and semiconducting properties of phenanthroline-fused phthalocyanine derivatives. Journal of Materials Chemistry, 2012, 22, 15695.	6.7	28
9	Helical nano-structures self-assembled from dimethylaminoethyloxy-containing unsymmetrical octakis-substituted phthalocyanine derivatives. Soft Matter, 2011, 7, 3417.	2.7	27
10	5,10,15,20-tetra(4-pyridyl)porphyrinato zinc coordination polymeric particles with different shapes and luminescent properties. CrystEngComm, 2012, 14, 7780.	2.6	26
11	A Study of the Interaction Between Cucurbit[8]uril and Alkylâ€Substituted 4â€Pyrrolidinopyridinium Salts. Chemistry - an Asian Journal, 2019, 14, 235-242.	3.3	20
12	A stimuli-responsive supramolecular assembly between inverted cucurbit[7]uril and hemicyanine dye. New Journal of Chemistry, 2018, 42, 15420-15426.	2.8	11
13	2,3,9,10,16,17,23,24-Octakis(phenoxy/octyloxy)phthalocyaninato manganese complexes. Synthesis, structure, and nonlinear optical property. Dyes and Pigments, 2013, 99, 154-159.	3.7	9
14	Study on the Binding Interaction of the $\hat{l}_{\pm},\hat{l}_{\pm}\hat{a}\in^2$, \hat{l}_{a} $\hat{a}\in^2$ -Tetramethylcucurbit [6] uril With Biogenic Amines in Solution and the Solid State. Frontiers in Chemistry, 2018, 6, 289.	3.6	9
15	Supramolecular drug inclusion complex constructed from cucurbit[7]uril and the hepatitis B drug Adefovir. Supramolecular Chemistry, 2019, 31, 260-267.	1.2	9
16	Construction of Tetrathiafulvalene-based Covalent Organic Frameworks for Superior Iodine Capture. Chemical Research in Chinese Universities, 2022, 38, 409-414.	2.6	8
17	Ruthenium coordinated dimer of phenanthroline-fused phthalocyaninato zinc complex. Synthesis, spectroscopic, and electrochemical properties. Dyes and Pigments, 2014, 105, 63-65.	3.7	6
18	Experimental and Theoretical Characterization of 5,10â€Diminoporphodimethenes: Dearomatized Porphyrinoids from Palladiumâ€Catalyzed Hydrazinations of 5,10â€Diarylporphyrins. ChemPlusChem, 2014, 79, 813-824.	2.8	5

#	Article	IF	CITATIONS
19	A hemicyanine and cucurbit[n]uril inclusion complex: competitive guest binding of cucurbit[7]uril and cucurbit[8]uril. Supramolecular Chemistry, 2019, 31, 457-465.	1.2	5
20	Experimental and Theoretical Characterization of 5,10-Diminoporphodimethenes: Dearomatized Porphyrinoids from Palladium-Catalyzed Hydrazinations of 5,10-Diarylporphyrins. ChemPlusChem, 2014, 79, 752-752.	2.8	0