

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8557649/publications.pdf Version: 2024-02-01

<u> Υμε \λ/μ</u>

#	Article	IF	CITATIONS
1	A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nature Materials, 2022, 21, 463-470.	13.3	108
2	Using sound to synthesize covalent organic frameworks in water. , 2022, 1, 87-95.		92
3	Accelerated Synthesis and Discovery of Covalent Organic Framework Photocatalysts for Hydrogen Peroxide Production. Journal of the American Chemical Society, 2022, 144, 9902-9909.	6.6	154
4	Binder-free 3D printing of covalent organic framework (COF) monoliths for CO2 adsorption. Chemical Engineering Journal, 2021, 403, 126333.	6.6	78
5	Exploring the Role of Cluster Formation in UiO Family Hf Metal–Organic Frameworks with <i>in Situ</i> X-ray Pair Distribution Function Analysis. Journal of the American Chemical Society, 2021, 143, 19668-19683.	6.6	24
6	An Expandable Hydrogen-Bonded Organic Framework Characterized by Three-Dimensional Electron Diffraction. Journal of the American Chemical Society, 2020, 142, 12743-12750.	6.6	70
7	Perovskite-related ReO3-type structures. Nature Reviews Materials, 2020, 5, 196-213.	23.3	62
8	Understanding the Structural and Electronic Properties of Bismuth Trihalides and Related Compounds. Inorganic Chemistry, 2020, 59, 3377-3386.	1.9	9
9	Control of Metal–Organic Framework Crystallization by Metastable Intermediate Preâ€equilibrium Species. Angewandte Chemie, 2019, 131, 576-581.	1.6	3
10	3D-Printing of Pure Metal–Organic Framework Monoliths. , 2019, 1, 147-153.		80
11	Polymorphism in M(H ₂ PO ₂) ₃ (M = V, Al, Ga) compounds with the perovskite-related ReO ₃ structure. Chemical Communications, 2019, 55, 2964-2967.	2.2	15
12	Control of Metal–Organic Framework Crystallization by Metastable Intermediate Preâ€equilibrium Species. Angewandte Chemie - International Edition, 2019, 58, 566-571.	7.2	47
13	Bottom-up Formation of Carbon-Based Structures with Multilevel Hierarchy from MOF–Guest Polyhedra. Journal of the American Chemical Society, 2018, 140, 6130-6136.	6.6	87
14	Pore closure in zeolitic imidazolate frameworks under mechanical pressure. Chemical Science, 2018, 9, 1654-1660.	3.7	63
15	MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chemical Communications, 2018, 54, 5268-5288.	2.2	237
16	Hypophosphite hybrid perovskites: a platform for unconventional tilts and shifts. Chemical Communications, 2018, 54, 3751-3754.	2.2	48
17	Synthesis, crystal structure, magnetic and electronic properties of the caesium-based transition metal halide Cs ₃ Fe ₂ Br ₉ . Journal of Materials Chemistry C, 2018, 6, 3573-3577.	2.7	25
18	High-Performance Energy Storage: Manganese-Oxide-Based Electrode Materials for Energy Storage Applications: How Close Are We to the Theoretical Capacitance? (Adv. Mater. 47/2018). Advanced Materials, 2018, 30, 1870364.	11.1	2

Yue Wu

#	Article	IF	CITATIONS
19	Trapping Amorphous Intermediates of Carbonates – A Combined Total Scattering and NMR Study. Journal of the American Chemical Society, 2018, 140, 14638-14646.	6.6	25
20	Hydrogen Bonding versus Entropy: Revealing the Underlying Thermodynamics of the Hybrid Organic–Inorganic Perovskite [CH ₃ NH ₃]PbBr ₃ . Chemistry of Materials, 2018, 30, 8782-8788.	3.2	29
21	Manganeseâ€Oxideâ€Based Electrode Materials for Energy Storage Applications: How Close Are We to the Theoretical Capacitance?. Advanced Materials, 2018, 30, e1802569.	11.1	94
22	Mechanochemical Access to Defect-Stabilized Amorphous Calcium Carbonate. Chemistry of Materials, 2018, 30, 6040-6052.	3.2	20
23	Single Co Atoms Anchored in Porous N-Doped Carbon for Efficient Zincâ^'Air Battery Cathodes. ACS Catalysis, 2018, 8, 8961-8969.	5.5	364
24	Mixed Xâ€ S ite Formate–Hypophosphite Hybrid Perovskites. Chemistry - A European Journal, 2018, 24, 11309-11313.	1.7	19
25	Structural variety in ytterbium dicarboxylate frameworks and in situ study diffraction of their solvothermal crystallisation. CrystEngComm, 2017, 19, 2424-2433.	1.3	13
26	Defect-Assisted Photoinduced Halide Segregation in Mixed-Halide Perovskite Thin Films. ACS Energy Letters, 2017, 2, 1416-1424.	8.8	437
27	High energy X-rays for following metal-organic framework formation: Identifying intermediates in interpenetrated MOF-5 crystallisation. Microporous and Mesoporous Materials, 2017, 254, 178-183.	2.2	19
28	Time-Resolved Powder X-ray Diffraction of the Solvothermal Crystallization of Cobalt Gallate Spinel Photocatalyst Reveals Transient Layered Double Hydroxides. Chemistry of Materials, 2017, 29, 5053-5057.	3.2	14
29	Variable temperature and high-pressure crystal chemistry of perovskite formamidinium lead iodide: a single crystal X-ray diffraction and computational study. Chemical Communications, 2017, 53, 7537-7540.	2.2	43
30	Metal–Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 5397-5404.	6.6	224
31	[Am]Mn(H ₂ POO) ₃ : A New Family of Hybrid Perovskites Based on the Hypophosphite Ligand. Journal of the American Chemical Society, 2017, 139, 16999-17002.	6.6	75
32	Synthesis and Characterization of the Rare-Earth Hybrid Double Perovskites: (CH ₃ NH ₃) ₂ KGdCl ₆ and (CH ₃ NH ₃) ₂ KYCl ₆ . Journal of Physical Chemistry Letters, 2017, 8, 5015-5020.	2.1	68
33	OPTIMIZATION OF †WHEEL-PARALLEL-IN-WHEEL' FOR A COMPACT CLIMBING ROBOT. , 2017, , .		Ο
34	Inâ€Situ Observation of Successive Crystallizations and Metastable Intermediates in the Formation of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2016, 55, 2012-2016.	7.2	53
35	Exchange of Coordinated Solvent During Crystallization of a Metal–Organic Framework Observed by In Situ Highâ€Energy Xâ€ray Diffraction. Angewandte Chemie - International Edition, 2016, 55, 4992-4996.	7.2	41
36	Exchange of Coordinated Solvent During Crystallization of a Metal–Organic Framework Observed by In Situ Highâ€Energy Xâ€ray Diffraction. Angewandte Chemie, 2016, 128, 5076-5080.	1.6	14

Yue Wu

#	Article	lF	CITATIONS
37	Timeâ€Resolved Inâ€Situ Xâ€ray Diffraction Reveals Metalâ€Dependent Metal–Organic Framework Formatio Angewandte Chemie, 2016, 128, 14287-14290.	on. 1.6	8
38	Timeâ€Resolved Inâ€Situ Xâ€ray Diffraction Reveals Metalâ€Dependent Metal–Organic Framework Formatio Angewandte Chemie - International Edition, 2016, 55, 14081-14084.	^{on.} 7.2	32
39	Simultaneous Differential Scanning Calorimetry-Synchrotron X-ray Powder Diffraction: A Powerful Technique for Physical Form Characterization in Pharmaceutical Materials. Analytical Chemistry, 2016, 88, 10111-10117.	3.2	27
40	Time-resolved in situ powder X-ray diffraction reveals the mechanisms of molten salt synthesis. Chemical Communications, 2016, 52, 13865-13868.	2.2	22
41	Inâ€Situ Observation of Successive Crystallizations and Metastable Intermediates in the Formation of Metal–Organic Frameworks. Angewandte Chemie, 2016, 128, 2052-2056.	1.6	15
42	Core–shell zeolite@aqueous miscible organic-layered double hydroxides. Chemical Science, 2016, 7, 1457-1461.	3.7	41
43	An in situ study of resin-assisted solvothermal metal-organic framework synthesis. Journal of Solid State Chemistry, 2016, 236, 209-214.	1.4	7
44	Prognosis of the probability of failure in tool condition monitoring application-a time series based approach. International Journal of Advanced Manufacturing Technology, 2015, 76, 513-521.	1.5	20
45	Time-Resolved <i>in Situ</i> Diffraction Reveals a Solid-State Rearrangement During Solvothermal MOF Synthesis. Chemistry of Materials, 2015, 27, 7236-7239.	3.2	25
46	Interpenetration as a Mechanism for Negative Thermal Expansion in the Metal–Organic Framework Cu ₃ (btb) ₂ (MOFâ€14). Angewandte Chemie - International Edition, 2014, 53, 5175-5178.	7.2	46
47	Scrutinizing negative thermal expansion in MOF-5 by scattering techniques and ab initio calculations. Dalton Transactions, 2013, 42, 1996-2007.	1.6	59
48	Local Vibrational Mechanism for Negative Thermal Expansion: A Combined Neutron Scattering and Firstâ€Principles Study. Angewandte Chemie - International Edition, 2010, 49, 585-588.	7.2	87
49	Elucidating Negative Thermal Expansion in MOF-5. Journal of Physical Chemistry C, 2010, 114, 16181-16186.	1.5	199
50	Negative Thermal Expansion in the Metal–Organic Framework Material Cu ₃ (1,3,5â€benzenetricarboxylate) ₂ . Angewandte Chemie - International Edition, 2008, 47, 8929-8932.	7.2	251