ConcepciÃ³n Aldea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8557543/publications.pdf

Version: 2024-02-01

840585 794469 104 546 11 19 citations g-index h-index papers 106 106 106 395 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Noise Reduction Technique using Multiple Photodiodes in Optical Receivers for POF Communications. , 2021, , .		1
2	High-Sensitivity Large-Area Photodiode Read-Out Using a Divide-and-Conquer Technique. Sensors, 2020, 20, 6316.	2.1	1
3	Model-based teaching of physics in higher education: a review of educational strategies and cognitive improvements. Journal of Applied Research in Higher Education, 2020, 13, 33-47.	1.1	4
4	Radio over Fiber: An Alternative Broadband Network Technology for IoT. Electronics (Switzerland), 2020, 9, 1785.	1.8	13
5	Quick response codes as a complement for the teaching of Electronics in laboratory activities. International Journal of Electrical Engineering and Education, 2020, , 002072092091643.	0.4	O
6	A 1 Gbps Chaos-Based Stream Cipher Implemented in 0.18 $\hat{l}\frac{1}{4}$ m CMOS Technology. Electronics (Switzerland), 2019, 8, 623.	1.8	6
7	A New Lightweight CSPRNG Implemented in a 0.18μm CMOS Technology. , 2019, , .		2
8	A Highly Linear Low-Noise Transimpedance Amplifier for Indoor Fiber-Wireless Remote Antenna Units. Electronics (Switzerland), 2019, 8, 437.	1.8	12
9	ICT-Based Didactic Strategies to Build Knowledge Models in Electronics in Higher Education. , 2019, , .		1
10	Chaos-Based Bitwise Dynamical Pseudorandom Number Generator On FPGA. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 291-293.	2.4	76
11	Intervenci $ ilde{A}^3$ n en el aula basada en recursos educativos de libre acceso. , 2019, , .		1
12	USING TWITTER TO PROMOTE THE TEACHING-LEARNING OF SCIENTIFIC DISCIPLINES. , 2019, , .		0
13	OPEN EDUCATIONAL RESOURCES TO IMPLEMENT AN ONLINE TUTORING. , 2019, , .		O
14	Fully-differential transimpedance amplifier for reliable wireless communications. Microelectronics Reliability, 2018, 83, 25-28.	0.9	2
15	A New Technique For Improving the Security of Chaos Based Cryptosystems. , 2018, , .		5
16	Highly-linear transimpedance amplifier for remote antenna units. , 2018, , .		3
17	Using hyperdata in a laboratory of electronics QR codes applied to experimental learning. , 2018, , .		5
18	Low-EVM CMOS Transimpedance Amplifier for Intermediate Frequency over Fiber., 2018,,.		3

#	Article	IF	CITATIONS
19	WOMEN IN STEM BY EULES: A PROJECT TO PROMOTE SCIENTIFIC VOCATIONS IN GIRLS. , 2018, , .		O
20	Design of a CMOS multiâ€rate adaptive continuousâ€time equalizer based on power spectrum estimation. International Journal of Circuit Theory and Applications, 2017, 45, 2226-2242.	1.3	1
21	Multi-Rate Adaptive Equalizer for Transmission Over Up to 50-m SI-POF. IEEE Photonics Technology Letters, 2017, 29, 587-590.	1.3	7
22	Transimpedance amplifier with programmable gain and bandwidth for capacitive MEMS accelerometers. , 2017, , .		4
23	Programmable differential capacitance-to-voltage converter for MEMS accelerometers. Proceedings of SPIE, 2017, , .	0.8	1
24	A methodology to design continuousâ€time adaptive equalizers. International Journal of Circuit Theory and Applications, 2017, 45, 1203-1217.	1.3	1
25	Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers. Sensors, 2017, 17, 67.	2.1	7
26	Uso de Hiperdatos en un Laboratorio de Electr \tilde{A}^3 nica ($C\tilde{A}^3$ digos QR) - [Use of Hyperdata in a Laboratory of Electronics (QR Codes)]. , 2017, , .		0
27	High-resolution wide-band LC-VCO for reliable operation in phase-locked loops. Microelectronics Reliability, 2016, 63, 251-255.	0.9	7
28	CMOS transimpedance amplifier with controllable gain for RF overlay. , 2016, , .		15
29	Using the Wiimote to Learn MEMS in a Physics Degree Program. IEEE Transactions on Education, 2016, 59, 169-174.	2.0	5
30	A phaseâ€space model to describe bangâ€bang phase detectors. International Journal of Circuit Theory and Applications, 2015, 43, 829-839.	1.3	1
31	A new equalizer for 2 Gb/s short-reach SI-POF links. , 2015, , .		O
32	1-V continuous-time linear equalizer for up to 2 Gb/s over 50-m SI-POF., 2015,,.		1
33	A 2.5-Gb/s multi-rate continuous-time adaptive equalizer for short reach optical links. , 2015, , .		5
34	A CMOS merged CDR and continuous-time adaptive equalizer. Proceedings of SPIE, 2015, , .	0.8	0
35	Single-Chip Receiver for 1.25 Gb/s Over 50-m SI-POF. IEEE Photonics Technology Letters, 2015, 27, 1220-1223.	1.3	4
36	A 1.7-GHz wide-band CMOS LC-VCO with 7-Bit coarse control. , 2015, , .		9

#	Article	IF	Citations
37	Continuous-Time Linear Equalizer for Multigigabit Transmission Through SI-POF in Factory Area Networks. IEEE Transactions on Industrial Electronics, 2015, 62, 6530-6532.	5.2	8
38	1â€V continuousâ€time equalizers for multiâ€gigabit shortâ€haul optical fiber communications. International Journal of Circuit Theory and Applications, 2014, 42, 146-164.	1.3	6
39	Design considerations for loop filters in continuous-time adaptive equalizers. , 2014, , .		1
40	A 1-V CMOS double loop continuous-time adaptive equalizer for short-haul optical networks. , 2014, , .		1
41	A double loop continuous-time adaptive equalizer. , 2014, , .		0
42	Applets for Physical Electronics learning. , 2014, , .		1
43	Wikisensors: A wiki from students for students. , 2014, , .		0
44	MEMS: From the classroom to the Wii. , 2014, , .		0
45	A Low-Power CMOS Receiver for 1.25 Gb/s Over 1- mm SI-POF Links. IEEE Transactions on Industrial Electronics, 2014, 61, 4246-4254.	5.2	11
46	Reliable CMOS adaptive equalizer for short-haul optical networks. Microelectronics Reliability, 2014, 54, 110-118.	0.9	12
47	Lowâ€voltage lowâ€power CMOS receiver frontâ€end for gigabit shortâ€reach optical communications. International Journal of Circuit Theory and Applications, 2013, 41, 1175-1187.	1.3	11
48	A fully-differential adaptive equalizer using the spectrum-balancing technique. , 2013, , .		5
49	Multi-gigabit analog equalizers for plastic opticalfibers. Microelectronics Journal, 2013, 44, 870-879.	1.1	2
50	Bang-bang phase detector model revisited. , 2013, , .		2
51	CMOS receiver with equalizer and CDR for short-reach optical communications. , 2013, , .		2
52	A 1.25 Gb/s fully integrated optical receiver for SI-POF applications. , 2013, , .		0
53	A 2.5 Gb/s low-voltage CMOS fully-differential adaptive equalizer. , 2013, , .		4
54	A 1-V 1.25-Gbps CMOS analog front-end for short reach optical links. , 2013, , .		8

#	Article	IF	Citations
55	New Multilevel Bang-Bang Phase Detector. IEEE Transactions on Instrumentation and Measurement, 2013, 62, 3384-3386.	2.4	11
56	A 1-V CMOS receiver front-end for high-speed SI-POF links. , 2012, , .		2
57	A 1-V CMOS front-end for high-speed 1-mm SI-POF links. , 2012, , .		1
58	Cost-Effective 1.25-Gb/s CMOS Receiver for 50-m Large-Core SI-POF Links. IEEE Photonics Technology Letters, 2012, 24, 485-487.	1.3	15
59	A CMOS continuous-time equalizer for short-reach optical communications. , 2011, , .		7
60	A CMOS equalizer for short-reach optical communications. , 2011, , .		1
61	Continuous-Time Analog Filtering: Design Strategies and Programmability in CMOS Technologies for VHF Applications. , 2010, , .		1
62	Digitally Programmable Analogue Circuits for Sensor Conditioning Systems. Sensors, 2009, 9, 3652-3665.	2.1	6
63	Continuousâ€time filter featuring Q and frequency onâ€chip automatic tuning. International Journal of Circuit Theory and Applications, 2009, 37, 221-242.	1.3	13
64	Development of remote laboratory experiences in Microelectronics and Intelligent Instrumentation. , 2009, , .		0
65	$0.18\hat{l}^1\!\!/\!\!4$ m CMOS inductorless AGC amplifier with 50dB input dynamic range for 10GBase-LX4 ethernet. , 2009, , .		2
66	A tunable mixed-mode interface circuit for sensor conditioning. , 2008, , .		0
67	CMOS filter with wide digitally programmable VHF range. Electronics Letters, 2007, 43, 21.	0.5	5
68	Low-voltage CMOS variable preamplifier for fiber-based gigabit ethernet. , 2007, , .		3
69	Continuous-time filter featuring Q and frequency on-chip automatic tuning. , 2007, , .		0
70	A hybrid fine/coarse auto-tuning scheme for digitally programmable VHF G <inf>m</inf> -C filters. Midwest Symposium on Circuits and Systems, 2007, , .	1.0	1
71	A 40–200 MHz programmable 4 th -order G <inf>m</inf> -C filter with auto-tuning system. Solid-State Circuits Conference, 2008 ESSCIRC 2008 34th European, 2007, , .	0.0	7
72	Digital Auto-Tuning System for Analog Filters. , 2006, , .		1

#	Article	IF	Citations
73	Fast-Settling Envelope Detectors. , 2006, , .		2
74	Design of a High-performance Envelope Detector. , 2006, , .		1
75	VHF Filtering with Digital Programmability and Accumulation MOS-C. Midwest Symposium on Circuits and Systems, 2006, , .	1.0	1
76	Digital self-tuning technique for continuous-time filters. , 2005, , .		1
77	A 0.18 Âm CMOS 3rd-Order Digitally Programmable Gm-C Filter for VHF Applications. IEICE Transactions on Information and Systems, 2005, E88-D, 1509-1510.	0.4	5
78	A physics based model for accumulation MOS capacitors. Solid-State Electronics, 2004, 48, 773-779.	0.8	9
79	Digitally programmable CMOS transconductor for very high frequency. Microelectronics Reliability, 2004, 44, 869-875.	0.9	9
80	Low voltage VHF biquad section. Electronics Letters, 2002, 38, 1177.	0.5	0
81	Low-Voltage Differentiator for VHF Filtering. Analog Integrated Circuits and Signal Processing, 2002, 33, 107-116.	0.9	5
82	Continuous-Time 4th Order Butterworth Low-Pass Filter for Video Frequency Applications. Analog Integrated Circuits and Signal Processing, 2001, 28, 35-42.	0.9	0
83	Video-frequency current-voltage mode integrator. Electronics Letters, 1999, 35, 773.	0.5	6
84	CMOS pseudo-differential transconductor for VHF applications. Electronics Letters, 1999, 35, 1540.	0.5	2
85	Variable frequency sinusoidal oscillators based on CCII/sup +/. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 1999, 46, 1386-1390.	0.1	52
86	Grounded resistor controlled sinusoidal oscillator using CFOAs. Electronics Letters, 1997, 33, 346.	0.5	38
87	Industrial process sensor based on surface plasmon resonance (SPR) 1. Distillation process monitoring. Sensors and Actuators A: Physical, 1993, 37-38, 221-225.	2.0	11
88	Four-layer chemical fibre optic plasmon-based sensor. Sensors and Actuators B: Chemical, 1992, 7, 771-774.	4.0	24
89	A low-voltage high-frequency integrator for CMOS continuous-time current-mode filters. , 0, , .		1
90	A technique for high frequency low distortion measurements. , 0, , .		6

#	Article	IF	CITATIONS
91	Approach to the realization of state variable based oscillators. , 0, , .		O
92	Optimized design for the high-swing cascode mirror., 0,,.		0
93	Continuous time low-pass filter for video frequency applications. , 0, , .		0
94	A 200 MHz MOST-only resonator. , 0, , .		0
95	A 62 dB dynamic range sixth-order band pass filter with 100-175 MHz tuning range. , 0, , .		5
96	Modeling of accumulation MOS capacitors for high performance analog circuits. , 0, , .		3
97	Pseudo-differential integrator for UHF applications in digital CMOS technologies. , 0, , .		2
98	Low voltage LC -ladder Gm-C low-pass filters with 42-215 MHz tunable range. , 0, , .		1
99	Tuning System for CMOS HF Analog Filters. , 0, , .		O
100	Design Techniques for VHF Filtering in Digital CMOS Technologies. , 0, , .		0
101	A Design Strategy for VHF Filters with Digital Programmability. , 0, , .		6
102	Enhanced eBooks in the teaching/learning process of electronics. , 0, , .		0
103	Electr $ ilde{A}^3$ nica en RED ada: An experience with a webinar program. , 0 , , .		0
104	Projects to encourage female students in STEM areas. , 0, , .		0