Klara Grantz Saskova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8557502/publications.pdf

Version: 2024-02-01

20 papers 815 citations

16 h-index 752573 20 g-index

22 all docs 22 docs citations

times ranked

22

1049 citing authors

#	Article	IF	CITATIONS
1	Lipid Nanoparticles for Broadâ€5pectrum Nucleic Acid Delivery. Advanced Functional Materials, 2021, 31, 2101391.	7.8	13
2	Nelfinavir Inhibits the TCF11/Nrf1-Mediated Proteasome Recovery Pathway in Multiple Myeloma. Cancers, 2020, 12, 1065.	1.7	23
3	The yeast proteases Ddi1 and Wss1 are both involved in the DNA replication stress response. DNA Repair, 2019, 80, 45-51.	1.3	31
4	Capturing a dynamically interacting inhibitor by paramagnetic NMR spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 5661-5673.	1.3	21
5	Quantitative proteomics reveals neuronal ubiquitination of Rngo/Ddi1 and several proteasomal subunits by Ube3a, accounting for the complexity of Angelman syndrome. Human Molecular Genetics, 2018, 27, 1955-1971.	1.4	30
6	Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog. Scientific Reports, 2016, 6, 30443.	1.6	46
7	Structural studies of the yeast DNA damage-inducible protein Ddi1 reveal domain architecture of this eukaryotic protein family. Scientific Reports, 2016, 6, 33671.	1.6	44
8	Specific Inhibitors of HIV Capsid Assembly Binding to the C-Terminal Domain of the Capsid Protein: Evaluation of 2-Arylquinazolines as Potential Antiviral Compounds. Journal of Medicinal Chemistry, 2016, 59, 545-558.	2.9	39
9	GS-8374, a Prototype Phosphonate-Containing Inhibitor of HIV-1 Protease, Effectively Inhibits Protease Mutants with Amino Acid Insertions. Journal of Virology, 2014, 88, 3586-3590.	1.5	9
10	Thermodynamic and structural analysis of <scp>HIV</scp> protease resistance to darunavir–Âanalysis of heavily mutated patientâ€derived <scp>HIV</scp> â€i proteases. FEBS Journal, 2014, 281, 1834-1847.	2.2	48
11	Mutations in HIV-1 <i>gag</i> and <i>pol</i> Compensate for the Loss of Viral Fitness Caused by a Highly Mutated Protease. Antimicrobial Agents and Chemotherapy, 2012, 56, 4320-4330.	1.4	40
12	Structure-Aided Design of Novel Inhibitors of HIV Protease Based on a Benzodiazepine Scaffold. Journal of Medicinal Chemistry, 2012, 55, 10130-10135.	2.9	53
13	Molecular Characterization of Clinical Isolates of Human Immunodeficiency Virus Resistant to the Protease Inhibitor Darunavir. Journal of Virology, 2009, 83, 8810-8818.	1.5	43
14	Backbone 1H, 13C, and 15N NMR assignment for the inactive form of the retroviral protease of the murine intracisternal A-type particle, inMIA-14 PR. Biomolecular NMR Assignments, 2009, 3, 261-264.	0.4	4
15	Design of HIV Protease Inhibitors Based on Inorganic Polyhedral Metallacarboranes. Journal of Medicinal Chemistry, 2009, 52, 7132-7141.	2.9	132
16	Potent inhibition of drug-resistant HIV protease variants by monoclonal antibodies. Antiviral Research, 2008, 78, 275-277.	1.9	7
17	Enzymatic and structural analysis of the I47A mutation contributing to the reduced susceptibility to HIV protease inhibitor lopinavir. Protein Science, 2008, 17, 1555-1564.	3.1	24
18	Inorganic Polyhedral Metallacarborane Inhibitors of HIV Protease: A New Approach to Overcoming Antiviral Resistance. Journal of Medicinal Chemistry, 2008, 51, 4839-4843.	2.9	90

#	Article	IF	CITATIONS
19	Ninety-Nine Is Not Enough: Molecular Characterization of Inhibitor-Resistant Human Immunodeficiency Virus Type 1 Protease Mutants with Insertions in the Flap Region. Journal of Virology, 2008, 82, 5869-5878.	1.5	39
20	Molecular Analysis of the HIV-1 Resistance Development: Enzymatic Activities, Crystal Structures, and Thermodynamics of Nelfinavir-resistant HIV Protease Mutants. Journal of Molecular Biology, 2007, 374, 1005-1016.	2.0	74