
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/855722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics, 2006, 8, 3172-3191.	1.3	2,597
2	Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics, 2015, 113, 184-215.	0.8	2,561
3	Equation-of-Motion Coupled-Cluster Methods for Open-Shell and Electronically Excited Species: The Hitchhiker's Guide to Fock Space. Annual Review of Physical Chemistry, 2008, 59, 433-462.	4.8	830
4	Q-Chem 2.0: a high-performanceab initio electronic structure program package. Journal of Computational Chemistry, 2000, 21, 1532-1548.	1.5	617
5	The spin–flip approach within time-dependent density functional theory: Theory and applications to diradicals. Journal of Chemical Physics, 2003, 118, 4807-4818.	1.2	581
6	Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. Journal of Chemical Physics, 2021, 155, 084801.	1.2	518
7	Size-consistent wave functions for bond-breaking: the equation-of-motion spin-flip model. Chemical Physics Letters, 2001, 338, 375-384.	1.2	430
8	Singlet-triplet gaps in diradicals by the spin-flip approach: A benchmark study. Journal of Chemical Physics, 2002, 117, 4694-4708.	1.2	321
9	Equation-of-motion spin-flip coupled-cluster model with single and double substitutions: Theory and application to cyclobutadiene. Journal of Chemical Physics, 2004, 120, 175-185.	1.2	293
10	Qâ€Chem: an engine for innovation. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2013, 3, 317-326.	6.2	287
11	Spin-Flip Equation-of-Motion Coupled-Cluster Electronic Structure Method for a Description of Excited States, Bond Breaking, Diradicals, and Triradicals. Accounts of Chemical Research, 2006, 39, 83-91.	7.6	275
12	Spin-flip configuration interaction: an electronic structure model that is both variational and size-consistent. Chemical Physics Letters, 2001, 350, 522-530.	1.2	254
13	Singlet Fission in a Covalently Linked Cofacial Alkynyltetracene Dimer. Journal of the American Chemical Society, 2016, 138, 617-627.	6.6	248
14	Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: Theory, implementation, and examples. Journal of Chemical Physics, 2007, 127, 234106.	1.2	233
15	Energies and analytic gradients for a coupled-cluster doubles model using variational Brueckner orbitals: Application to symmetry breaking in O4+. Journal of Chemical Physics, 1998, 109, 4171-4181.	1.2	228
16	Size-consistent wave functions for nondynamical correlation energy: The valence active space optimized orbital coupled-cluster doubles model. Journal of Chemical Physics, 1998, 109, 10669-10678.	1.2	222
17	Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing?. Chemical Reviews, 2017, 117, 758-795.	23.0	203
18	Perturbative corrections to the equation-of-motion spin–flip self-consistent field model: Application to bond-breaking and equilibrium properties of diradicals. Journal of Chemical Physics, 2002, 116, 3194-3203.	1.2	192

#	Article	IF	CITATIONS
19	General formulation of spin-flip time-dependent density functional theory using non-collinear kernels: Theory, implementation, and benchmarks. Journal of Chemical Physics, 2012, 136, 204103.	1.2	188
20	Fission of Entangled Spins: An Electronic Structure Perspective. Journal of Physical Chemistry Letters, 2013, 4, 3845-3852.	2.1	170
21	Cross sections and photoelectron angular distributions in photodetachment from negative ions using equation-of-motion coupled-cluster Dyson orbitals. Journal of Chemical Physics, 2009, 131, 124114.	1.2	165
22	Femtosecond Multidimensional Imaging of a Molecular Dissociation. Science, 2006, 311, 219-222.	6.0	164
23	Shape of Multireference, Equation-of-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection. Journal of Chemical Theory and Computation, 2014, 10, 3074-3084.	2.3	161
24	Second-order perturbation corrections to singles and doubles coupled-cluster methods: General theory and application to the valence optimized doubles model. Journal of Chemical Physics, 2000, 113, 3548-3560.	1.2	155
25	Calculations predict a stable molecular crystal of N8. Nature Chemistry, 2014, 6, 52-56.	6.6	152
26	Observation of the fastest chemical processes in the radiolysis of water. Science, 2020, 367, 179-182.	6.0	149
27	A spin-complete version of the spin-flip approach to bond breaking: What is the impact of obtaining spin eigenfunctions?. Journal of Chemical Physics, 2003, 118, 9084-9094.	1.2	142
28	New and Efficient Equation-of-Motion Coupled-Cluster Framework for Core-Excited and Core-Ionized States. Journal of Chemical Theory and Computation, 2019, 15, 3117-3133.	2.3	139
29	A noniterative perturbative triples correction for the spin-flipping and spin-conserving equation-of-motion coupled-cluster methods with single and double substitutions. Journal of Chemical Physics, 2008, 129, 194105.	1.2	138
30	Extending Quantum Chemistry of Bound States to Electronic Resonances. Annual Review of Physical Chemistry, 2017, 68, 525-553.	4.8	136
31	Linker-Dependent Singlet Fission in Tetracene Dimers. Journal of the American Chemical Society, 2018, 140, 10179-10190.	6.6	129
32	Benchmarking Excited-State Calculations Using Exciton Properties. Journal of Chemical Theory and Computation, 2018, 14, 710-725.	2.3	128
33	Excited states theory for optimized orbitals and valence optimized orbitals coupled-cluster doubles models. Journal of Chemical Physics, 2000, 113, 6509-6527.	1.2	125
34	Quantum Chemistry Behind Bioimaging: Insights from Ab Initio Studies of Fluorescent Proteins and Their Chromophores. Accounts of Chemical Research, 2012, 45, 265-275.	7.6	125
35	General implementation of the resolution-of-the-identity and Cholesky representations of electron repulsion integrals within coupled-cluster and equation-of-motion methods: Theory and benchmarks. Journal of Chemical Physics, 2013, 139, 134105.	1.2	117
36	A Simple Kinetic Model for Singlet Fission: A Role of Electronic and Entropic Contributions to Macroscopic Rates. Journal of Physical Chemistry C, 2014, 118, 5188-5195.	1.5	116

ANNA I KRYLOV

#	Article	IF	CITATIONS
37	On the Electronically Excited States of Uracil. Journal of Physical Chemistry A, 2008, 112, 9983-9992.	1.1	115
38	Photoelectron Wave Function in Photoionization: Plane Wave or Coulomb Wave?. Journal of Physical Chemistry Letters, 2015, 6, 4532-4540.	2.1	115
39	First-Principle Protocol for Calculating Ionization Energies and Redox Potentials of Solvated Molecules and Ions: Theory and Application to Aqueous Phenol and Phenolate. Journal of Physical Chemistry B, 2012, 116, 7269-7280.	1.2	113
40	Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks. Journal of Chemical Physics, 2014, 141, 024102.	1.2	113
41	Quantum Chemical Benchmark Studies of the Electronic Properties of the Green Fluorescent Protein Chromophore. 1. Electronically Excited and Ionized States of the Anionic Chromophore in the Gas Phase. Journal of Chemical Theory and Computation, 2009, 5, 1895-1906.	2.3	109
42	Spin-conserving and spin-flipping equation-of-motion coupled-cluster method with triple excitations. Journal of Chemical Physics, 2005, 123, 084107.	1.2	107
43	Potential Energy Landscape of the Electronic States of the GFP Chromophore in Different Protonation Forms: Electronic Transition Energies and Conical Intersections. Journal of Chemical Theory and Computation, 2010, 6, 2377-2387.	2.3	106
44	New implementation of highâ€level correlated methods using a general block tensor library for highâ€performance electronic structure calculations. Journal of Computational Chemistry, 2013, 34, 2293-2309.	1.5	105
45	Frozen natural orbitals for ionized states within equation-of-motion coupled-cluster formalism. Journal of Chemical Physics, 2010, 132, 014109.	1.2	103
46	Spin-flip methods in quantum chemistry. Physical Chemistry Chemical Physics, 2020, 22, 4326-4342.	1.3	102
47	Noncovalent Interactions in Extended Systems Described by the Effective Fragment Potential Method: Theory and Application to Nucleobase Oligomers. Journal of Physical Chemistry A, 2010, 114, 12739-12754.	1.1	100
48	A Fresh Look at Resonances and Complex Absorbing Potentials: Density Matrix-Based Approach. Journal of Physical Chemistry Letters, 2014, 5, 310-315.	2.1	99
49	A study of interstellar aldehydes and enols as tracers of a cosmic ray-driven nonequilibrium synthesis of complex organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7727-7732.	3.3	99
50	Interacting Rydberg and valence states in radicals and molecules: experimental and theoretical studies. International Reviews in Physical Chemistry, 2009, 28, 267-308.	0.9	95
51	Effect of Solvation on the Vertical Ionization Energy of Thymine: From Microhydration to Bulk. Journal of Physical Chemistry A, 2011, 115, 6028-6038.	1.1	95
52	Products of the Benzene + O(³ P) Reaction. Journal of Physical Chemistry A, 2010, 114, 3355-3370.	1.1	92
53	On couplings and excimers: lessons from studies of singlet fission in covalently linked tetracene dimers. Physical Chemistry Chemical Physics, 2016, 18, 7751-7761.	1.3	92
54	Electronic Structure and Spectroscopy of Nucleic Acid Bases: Ionization Energies, Ionization-Induced Structural Changes, and Photoelectron Spectra. Journal of Physical Chemistry A, 2010, 114, 12305-12317.	1.1	91

#	Article	IF	CITATIONS
55	Electronic structure of the trimethylenemethane diradical in its ground and electronically excited states:â€,Bonding, equilibrium geometries, and vibrational frequencies. Journal of Chemical Physics, 2003, 118, 6874-6883.	1.2	90
56	Multiheme Cytochrome Mediated Redox Conduction through <i>Shewanella oneidensis</i> MR-1 Cells. Journal of the American Chemical Society, 2018, 140, 10085-10089.	6.6	89
57	Charge localization and Jahn–Teller distortions in the benzene dimer cation. Journal of Chemical Physics, 2008, 129, 074104.	1.2	88
58	The effect of ï€-stacking, H-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine–adenine, thymine–thymine and adenine–thymine dimers. Physical Chemistry Chemical Physics, 2010, 12, 2292.	1.3	88
59	Spin-contamination of coupled-cluster wave functions. Journal of Chemical Physics, 2000, 113, 6052-6062.	1.2	87
60	Triradicals. Journal of Physical Chemistry A, 2005, 109, 10638-10645.	1.1	87
61	Effect of Protein Environment on Electronically Excited and Ionized States of the Green Fluorescent Protein Chromophore. Journal of Physical Chemistry B, 2011, 115, 8296-8303.	1.2	87
62	Double spin-flip approach within equation-of-motion coupled cluster and configuration interaction formalisms: Theory, implementation, and examples. Journal of Chemical Physics, 2009, 130, 044103.	1.2	86
63	Benchmark full configuration interaction and equation-of-motion coupled-cluster model with single and double substitutions for ionized systems results for prototypical charge transfer systems: Noncovalent ionized dimers. Journal of Chemical Physics, 2007, 127, 164110.	1.2	85
64	Electronic Structure of the Water Dimer Cation. Journal of Physical Chemistry A, 2008, 112, 6159-6170.	1.1	84
65	From orbitals to observables and back. Journal of Chemical Physics, 2020, 153, 080901.	1.2	84
66	Mapping the Excited State Potential Energy Surface of a Retinal Chromophore Model with Multireference and Equation-of-Motion Coupled-Cluster Methods. Journal of Chemical Theory and Computation, 2013, 9, 4495-4506.	2.3	83
67	Analytic gradients for the spin-conserving and spin-flipping equation-of-motion coupled-cluster models with single and double substitutions. Journal of Chemical Physics, 2005, 122, 224106.	1.2	82
68	Dissecting the Effect of Morphology on the Rates of Singlet Fission: Insights from Theory. Journal of Physical Chemistry C, 2014, 118, 19608-19617.	1.5	80
69	What We Can Learn from the Norms of One-Particle Density Matrices, and What We Can't: Some Results for Interstate Properties in Model Singlet Fission Systems. Journal of Physical Chemistry A, 2014, 118, 11943-11955.	1.1	80
70	Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations. Journal of Chemical Physics, 2015, 143, 064102.	1.2	80
71	Non-Condon Effects in the One- and Two-Photon Absorption Spectra of the Green Fluorescent Protein. Journal of Physical Chemistry Letters, 2011, 2, 488-492.	2.1	77
72	Extension of the Effective Fragment Potential Method to Macromolecules. Journal of Physical Chemistry B, 2016, 120, 6562-6574.	1.2	72

#	Article	lF	CITATIONS
73	Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science. Journal of Chemical Physics, 2018, 149, 180901.	1.2	72
74	Conical Intersection and Potential Energy Surface Features of a Model Retinal Chromophore: Comparison of EOM-CC and Multireference Methods. Journal of Chemical Theory and Computation, 2013, 9, 284-292.	2.3	70
75	Bonding Patterns in Benzene Triradicals from Structural, Spectroscopic, and Thermochemical Perspectives. Journal of Physical Chemistry A, 2004, 108, 6581-6588.	1.1	69
76	Spectroscopic signatures of proton transfer dynamics in the water dimer cation. Journal of Chemical Physics, 2010, 132, 194311.	1.2	69
77	Ionization of dimethyluracil dimers leads to facile proton transfer in the absence of hydrogen bonds. Nature Chemistry, 2012, 4, 323-329.	6.6	69
78	The <scp><i>ezSpectra</i></scp> suite: An easyâ€ŧoâ€use toolkit for spectroscopy modeling. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1546.	6.2	67
79	lonization of cytosine monomer and dimer studied by VUV photoionization and electronic structure calculations. Physical Chemistry Chemical Physics, 2010, 12, 2860.	1.3	65
80	First-Principles Characterization of the Energy Landscape and Optical Spectra of Green Fluorescent Protein along the A→l→B Proton Transfer Route. Journal of the American Chemical Society, 2013, 135, 11541-11549.	6.6	64
81	Singlet Fission in Perylenediimide Dimers. Journal of Physical Chemistry C, 2018, 122, 25753-25763.	1.5	64
82	Complex-scaled equation-of-motion coupled-cluster method with single and double substitutions for autoionizing excited states: Theory, implementation, and examples. Journal of Chemical Physics, 2013, 138, 124106.	1.2	63
83	Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks. Journal of Chemical Physics, 2015, 142, 064118.	1.2	63
84	Photodissociation dynamics of HCl in solid Ar: Cage exit, nonadiabatic transitions, and recombination. Journal of Chemical Physics, 1997, 106, 6574-6587.	1.2	62
85	Roaming Pathway Leading to Unexpected Water + Vinyl Products in C ₂ H ₄ OH Dissociation. Journal of Physical Chemistry Letters, 2010, 1, 3058-3065.	2.1	62
86	Electronic structure of the benzene dimer cation. Journal of Chemical Physics, 2007, 127, 044317.	1.2	61
87	Electronic structure of the 1,3,5-tridehydrobenzene triradical in its ground and excited states. Journal of Chemical Physics, 2003, 118, 9614-9622.	1.2	59
88	5-Dehydro-1,3-quinodimethane: A Hydrocarbon with an Open-Shell Doublet Ground State. Angewandte Chemie - International Edition, 2004, 43, 742-745.	7.2	58
89	Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments. Journal of Chemical Physics, 2016, 144, 054113.	1.2	58
90	Intra- and Intermolecular Singlet Fission in Covalently Linked Dimers. Journal of Physical Chemistry C, 2016, 120, 19070-19077.	1.5	56

#	Article	IF	CITATIONS
91	Chromophore Photoreduction in Red Fluorescent Proteins Is Responsible for Bleaching and Phototoxicity. Journal of Physical Chemistry B, 2014, 118, 4527-4534.	1.2	55
92	Same but Different: Dipole-Stabilized Shape Resonances in CuF [–] and AgF [–] . Journal of Physical Chemistry Letters, 2015, 6, 2786-2793.	2.1	55
93	Nonadiabatic dynamics and electronic energy relaxation of Cl(2P) atoms in solid Ar. Journal of Chemical Physics, 1996, 105, 4626-4635.	1.2	54
94	A Combined Experimental and Theoretical Study on the Formation of Interstellar Propylene Oxide (CH ₃ CHCH ₂ O)—A Chiral Molecule. Astrophysical Journal, 2018, 860, 108.	1.6	54
95	Photodissociation of ICN in solid and in liquid Ar: Dynamics of the cage effect and of excitedâ€state isomerization. Journal of Chemical Physics, 1994, 100, 4242-4252.	1.2	52
96	Turning On and Off Photoinduced Electron Transfer in Fluorescent Proteins by π-Stacking, Halide Binding, and Tyr145 Mutations. Journal of the American Chemical Society, 2016, 138, 4807-4817.	6.6	52
97	New algorithm for tensor contractions on multi-core CPUs, GPUs, and accelerators enables CCSD and EOM-CCSD calculations with over 1000 basis functions on a single compute node. Journal of Computational Chemistry, 2017, 38, 842-853.	1.5	51
98	Perturbative triples correction for the equation-of-motion coupled-cluster wave functions with single and double substitutions for ionized states: Theory, implementation, and examples. Journal of Chemical Physics, 2009, 131, 114112.	1.2	50
99	Using the charge-stabilization technique in the double ionization potential equation-of-motion calculations with dianion references. Journal of Chemical Physics, 2011, 135, 084109.	1.2	49
100	Complex Absorbing Potential Equation-of-Motion Coupled-Cluster Method Yields Smooth and Internally Consistent Potential Energy Surfaces and Lifetimes for Molecular Resonances. Journal of Physical Chemistry Letters, 2014, 5, 3078-3085.	2.1	48
101	Dyson orbitals within the fc-CVS-EOM-CCSD framework: theory and application to X-ray photoelectron spectroscopy of ground and excited states. Physical Chemistry Chemical Physics, 2020, 22, 2693-2703.	1.3	48
102	The effect of π-stacking and H-bonding on ionization energies of a nucleobase: uracil dimer cation. Physical Chemistry Chemical Physics, 2009, 11, 1303.	1.3	47
103	Electronic structure of the two isomers of the anionic form of <i>p</i> -coumaric acid chromophore. Journal of Chemical Physics, 2011, 134, 034310.	1.2	47
104	Effective fragment potential method in <scp>Q HEM</scp> : A guide for users and developers. Journal of Computational Chemistry, 2013, 34, 1060-1070.	1.5	47
105	Quantifying charge resonance and multiexciton character in coupled chromophores by charge and spin cumulant analysis. Journal of Chemical Physics, 2015, 142, 224104.	1.2	46
106	Equation-of-Motion Coupled-Cluster Theory to Model L-Edge X-ray Absorption and Photoelectron Spectra. Journal of Physical Chemistry Letters, 2020, 11, 8314-8321.	2.1	46
107	Singlet–triplet energy gaps and the degree of diradical character in binuclear copper molecular magnets characterized by spin-flip density functional theory. Physical Chemistry Chemical Physics, 2018, 20, 13127-13144.	1.3	45
108	Quantum Chemical Benchmark Studies of the Electronic Properties of the Green Fluorescent Protein Chromophore: 2. <i>Cis</i> â^' <i>Trans</i> Isomerization in Water. Journal of Chemical Theory and Computation, 2009, 5, 1907-1914.	2.3	44

ANNA I KRYLOV

#	Article	IF	CITATIONS
109	Calculations of non-adiabatic couplings within equation-of-motion coupled-cluster framework: Theory, implementation, and validation against multi-reference methods. Journal of Chemical Physics, 2018, 148, 044103.	1.2	44
110	Four Bases Score a Run: Ab Initio Calculations Quantify a Cooperative Effect of H-Bonding and Ï€-Stacking on the Ionization Energy of Adenine in the AATT Tetramer. Journal of Physical Chemistry Letters, 2012, 3, 2726-2732.	2.1	43
111	Electronic States of the Benzene Dimer: A Simple Case of Complexity. Journal of Physical Chemistry A, 2012, 116, 653-662.	1.1	43
112	Proton Transfer in Nucleobases is Mediated by Water. Journal of Physical Chemistry A, 2013, 117, 6789-6797.	1.1	43
113	New algorithms for iterative matrixâ€free eigensolvers in quantum chemistry. Journal of Computational Chemistry, 2015, 36, 273-284.	1.5	43
114	Conical and glancing Jahn-Teller intersections in the cyclic trinitrogen cation. Journal of Chemical Physics, 2006, 124, 224309.	1.2	42
115	How to stay out of trouble in RIXS calculations within equation-of-motion coupled-cluster damped response theory? Safe hitchhiking in the excitation manifold by means of core–valence separation. Physical Chemistry Chemical Physics, 2020, 22, 2629-2641.	1.3	42
116	The effect of substituents on electronic states' ordering in meta-xylylene diradicals: Qualitative insights from quantitative studies. Journal of Chemical Physics, 2005, 123, 104304.	1.2	41
117	A VUV Photoionization and Ab Initio Determination of the Ionization Energy of a Gas-Phase Sugar (Deoxyribose). Journal of Physical Chemistry Letters, 2012, 3, 97-101.	2.1	41
118	Quantitative El-Sayed Rules for Many-Body Wave Functions from Spinless Transition Density Matrices. Journal of Physical Chemistry Letters, 2019, 10, 4857-4862.	2.1	41
119	General framework for calculating spin–orbit couplings using spinless one-particle density matrices: Theory and application to the equation-of-motion coupled-cluster wave functions. Journal of Chemical Physics, 2019, 151, 034106.	1.2	41
120	Photodissociation of HCl adsorbed on the surface of an Ar12 cluster: Nonadiabatic molecular dynamics simulations. Journal of Chemical Physics, 1999, 110, 11047-11053.	1.2	40
121	Molecular Modeling Clarifies the Mechanism of Chromophore Maturation in the Green Fluorescent Protein. Journal of the American Chemical Society, 2017, 139, 10239-10249.	6.6	39
122	On the basis set selection for calculations of core-level states: different strategies to balance cost and accuracy. Molecular Physics, 2020, 118, e1769872.	0.8	39
123	Photodissociation, electronic relaxation and recombination of HCl in Arn(HCl) clusters Non-adiabatic molecular dynamics simulations. Faraday Discussions, 1997, 108, 243-254.	1.6	38
124	The Role of Excited-State Topology in Three-Body Dissociation of <i>sym</i> -Triazine. Science, 2008, 321, 826-830.	6.0	38
125	Quantum Chemistry Calculations Provide Support to the Mechanism of the Light-Induced Structural Changes in the Flavin-Binding Photoreceptor Proteins. Journal of Chemical Theory and Computation, 2010, 6, 2293-2302.	2.3	38
126	The effect of microhydration on ionization energies of thymine. Faraday Discussions, 2011, 150, 313.	1.6	38

#	Article	IF	CITATIONS
127	Insight into the Common Mechanism of the Chromophore Formation in the Red Fluorescent Proteins: The Elusive Blue Intermediate Revealed. Journal of the American Chemical Society, 2012, 134, 2807-2814.	6.6	38
128	Double Precision Is Not Needed for Many-Body Calculations: Emergent Conventional Wisdom. Journal of Chemical Theory and Computation, 2018, 14, 4088-4096.	2.3	38
129	Computational Challenges in Modeling of Representative Bioimaging Proteins: GFP-Like Proteins, Flavoproteins, and Phytochromes. Journal of Physical Chemistry B, 2019, 123, 6133-6149.	1.2	38
130	Coupled-cluster based approach for core-level states in condensed phase: Theory and application to different protonated forms of aqueous glycine. Journal of Chemical Physics, 2017, 147, 014107.	1.2	37
131	Visualizing the Contributions of Virtual States to Two-Photon Absorption Cross Sections by Natural Transition Orbitals of Response Transition Density Matrices. Journal of Physical Chemistry Letters, 2017, 8, 3256-3265.	2.1	37
132	Pyridinium Analogues of Green Fluorescent Protein Chromophore: Fluorogenic Dyes with Large Solvent-Dependent Stokes Shift. Journal of Physical Chemistry Letters, 2018, 9, 1958-1963.	2.1	37
133	Towards a rational design of laser-coolable molecules: insights from equation-of-motion coupled-cluster calculations. Physical Chemistry Chemical Physics, 2019, 21, 19447-19457.	1.3	36
134	Degree of Initial Hole Localization/Delocalization in Ionized Water Clusters. Journal of Physical Chemistry A, 2009, 113, 4423-4429.	1.1	35
135	On the Nature of an Extended Stokes Shift in the mPlum Fluorescent Protein. Journal of Physical Chemistry B, 2015, 119, 13052-13062.	1.2	35
136	Characterizing Bonding Patterns in Diradicals and Triradicals by Density-Based Wave Function Analysis: A Uniform Approach. Journal of Chemical Theory and Computation, 2018, 14, 638-648.	2.3	35
137	Photodissociation Dynamics of Formaldehyde Initiated at the T ₁ /S ₀ Minimum Energy Crossing Configurations. Journal of Physical Chemistry A, 2008, 112, 13267-13270.	1.1	34
138	On the Photodetachment from the Green Fluorescent Protein Chromophore. Journal of Physical Chemistry A, 2013, 117, 11815-11822.	1.1	34
139	The theoretical prediction of infrared spectra of <i>trans</i> - and <i>cis</i> -hydroxycarbene calculated using full dimensional <i>ab initio</i> potential energy and dipole moment surfaces. Journal of Chemical Physics, 2008, 128, 204310.	1.2	33
140	Spectroscopy, polarization and nonadiabatic dynamics of electronically excited Ba(Ar)n clusters: Theory and experiment. Journal of Chemical Physics, 1996, 104, 3651-3663.	1.2	32
141	The 1,2,3-Tridehydrobenzene Triradical:  2B or Not 2B? The Answer is 2A!. Journal of Physical Chemistry A, 2007, 111, 5071-5080.	1.1	32
142	A new electronic structure method for doublet states: Configuration interaction in the space of ionized 1h and 2h1p determinants. Journal of Chemical Physics, 2009, 130, 124113.	1.2	32
143	The effect of oxidation on the electronic structure of the green fluorescent protein chromophore. Journal of Chemical Physics, 2010, 132, 115104.	1.2	32
144	Exploring Structural and Optical Properties of Fluorescent Proteins by Squeezing: Modeling High-Pressure Effects on the mStrawberry and mCherry Red Fluorescent Proteins. Journal of Physical Chemistry B, 2012, 116, 12426-12440.	1.2	32

ANNA I KRYLOV

#	Article	IF	CITATIONS
145	Ligand influence on the electronic spectra of monocationic copper–bipyridine complexes. Physical Chemistry Chemical Physics, 2015, 17, 31938-31946.	1.3	32
146	Time-resolved near-edge X-ray absorption fine structure of pyrazine from electronic structure and nuclear wave packet dynamics simulations. Journal of Chemical Physics, 2019, 151, 124114.	1.2	32
147	Performance of the Spin-Flip and Multireference Methods for Bond Breaking in Hydrocarbons:  A Benchmark Study. Journal of Physical Chemistry A, 2007, 111, 13264-13271.	1.1	31
148	Effect of microhydration on the electronic structure of the chromophores of the photoactive yellow and green fluorescent proteins. Journal of Chemical Physics, 2011, 135, 194304.	1.2	31
149	Interplay of Open-Shell Spin-Coupling and Jahn–Teller Distortion in Benzene Radical Cation Probed by X-ray Spectroscopy. Journal of Physical Chemistry A, 2020, 124, 9532-9541.	1.1	31
150	The photoelectron spectrum of elusive cyclic-N3 and characterization of the potential energy surface and vibrational states of the ion. Journal of Chemical Physics, 2006, 125, 084306.	1.2	30
151	Quantifying local exciton, charge resonance, and multiexciton character in correlated wave functions of multichromophoric systems. Journal of Chemical Physics, 2016, 144, 014102.	1.2	30
152	Static polarizabilities for excited states within the spin-conserving and spin-flipping equation-of-motion coupled-cluster singles and doubles formalism: Theory, implementation, and benchmarks. Journal of Chemical Physics, 2016, 145, 204116.	1.2	30
153	X-ray transient absorption reveals the 1Au (nï€*) state of pyrazine in electronic relaxation. Nature Communications, 2021, 12, 5003.	5.8	29
154	Photodissociation dynamics of the NO dimer. I. Theoretical overview of the ultraviolet singlet excited states. Journal of Chemical Physics, 2006, 125, 084301.	1.2	28
155	Electronic Structure of Carbon Trioxide and Vibronic Interactions Involving Jahnâ~'Teller States. Journal of Physical Chemistry A, 2007, 111, 8271-8276.	1.1	28
156	Ab Initio Calculation of the Photoelectron Spectra of the Hydroxycarbene Diradicals. Journal of Physical Chemistry A, 2009, 113, 7802-7809.	1.1	28
157	Electronic Structure and Spectroscopy of Oxyallyl: A Theoretical Study. Journal of Physical Chemistry A, 2010, 114, 6935-6943.	1.1	28
158	A Light-Induced Reaction with Oxygen Leads to Chromophore Decomposition and Irreversible Photobleaching in GFP-Type Proteins. Journal of Physical Chemistry B, 2015, 119, 5444-5452.	1.2	28
159	Rewriting the Story of Excimer Formation in Liquid Benzene. Journal of Physical Chemistry A, 2017, 121, 1962-1975.	1.1	28
160	Two-photon absorption spectroscopy of <i>trans</i> -stilbene, <i>cis</i> -stilbene, and phenanthrene: Theory and experiment. Journal of Chemical Physics, 2017, 146, 144305.	1.2	28
161	Resonant Inelastic X-Ray Scattering Reveals Hidden Local Transitions of the Aqueous OH Radical. Physical Review Letters, 2020, 124, 236001.	2.9	28
162	Distinct Electron Conductance Regimes in Bacterial Decaheme Cytochromes. Angewandte Chemie - International Edition, 2018, 57, 6805-6809.	7.2	27

#	Article	IF	CITATIONS
163	Bound and continuum-embedded states of cyanopolyyne anions. Physical Chemistry Chemical Physics, 2018, 20, 4805-4817.	1.3	27
164	Implementation of analytic gradients for CCSD and EOM-CCSD using Cholesky decomposition of the electron-repulsion integrals and their derivatives: Theory and benchmarks. Journal of Chemical Physics, 2019, 151, 014110.	1.2	27
165	Probing the Electronic Structure of Bulk Water at the Molecular Length Scale with Angle-Resolved Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 5162-5170.	2.1	27
166	Extension of frozen natural orbital approximation to open-shell references: Theory, implementation, and application to single-molecule magnets. Journal of Chemical Physics, 2020, 152, 034105.	1.2	27
167	Toward Ultracold Organic Chemistry: Prospects of Laser Cooling Large Organic Molecules. Journal of Physical Chemistry Letters, 2020, 11, 6670-6676.	2.1	26
168	Frontiers in Multiscale Modeling of Photoreceptor Proteins. Photochemistry and Photobiology, 2021, 97, 243-269.	1.3	26
169	Overtone-induced dissociation and isomerization dynamics of the hydroxymethyl radical (CH2OH and) Tj ETQq1	1 0.78431 1.2	4 rgBT /Ove
170	Toward Molecular-Level Characterization of Photoinduced Decarboxylation of the Green Fluorescent Protein: Accessibility of the Charge-Transfer States. Journal of Chemical Theory and Computation, 2012, 8, 1912-1920.	2.3	25
171	Triple-Decker Motif for Red-Shifted Fluorescent Protein Mutants. Journal of Physical Chemistry Letters, 2013, 4, 1743-1747.	2.1	25
172	Two Cycling Centers in One Molecule: Communication by Through-Bond Interactions and Entanglement of the Unpaired Electrons. Journal of Physical Chemistry Letters, 2020, 11, 1297-1304.	2.1	25
173	Structure, vibrational frequencies, ionization energies, and photoelectron spectrum of the para-benzyne radical anion. Theoretical Chemistry Accounts, 2008, 120, 45-58.	0.5	24
174	Table-Top X-ray Spectroscopy of Benzene Radical Cation. Journal of Physical Chemistry A, 2020, 124, 9524-9531.	1.1	24
175	Feshbach–Fano approach for calculation of Auger decay rates using equation-of-motion coupled-cluster wave functions. I. Theory and implementation. Journal of Chemical Physics, 2021, 154, 084124.	1.2	24
176	Small doped [sup 3]He clusters: A systematic quantum chemistry approach to fermionic nuclear wave functions and energies. Journal of Chemical Physics, 2001, 115, 10214.	1.2	23
177	What Drives the Redox Properties of Model Green Fluorescence Protein Chromophores?. Journal of Physical Chemistry Letters, 2011, 2, 2593-2597.	2.1	23
178	Real and Imaginary Excitons: Making Sense of Resonance Wave Functions by Using Reduced State and Transition Density Matrices. Journal of Physical Chemistry Letters, 2018, 9, 4101-4108.	2.1	22
179	Spectroscopy of the Cyano Radical in an Aqueous Environment. Journal of Physical Chemistry A, 2006, 110, 4854-4865.	1.1	21
180	Effect of a Heteroatom on Bonding Patterns and Triradical Stabilization Energies of 2,4,6-Tridehydropyridine versus 1,3,5-Tridehydrobenzene. Journal of Physical Chemistry A, 2009, 113, 2591-2599.	1.1	21

#	Article	IF	CITATIONS
181	Ionization-Induced Structural Changes in Uracil Dimers and Their Spectroscopic Signatures. Journal of Chemical Theory and Computation, 2010, 6, 705-717.	2.3	21
182	De-perturbative corrections for charge-stabilized double ionization potential equation-of-motion coupled-cluster method. Journal of Chemical Physics, 2012, 136, 244109.	1.2	21
183	Beyond Vinyl:Â Electronic Structure of Unsaturated Propen-1-yl, Propen-2-yl, 1-Buten-2-yl, andtrans-2-Buten-2-yl Hydrocarbon Radicals. Journal of Physical Chemistry A, 2006, 110, 2746-2758.	1.1	20
184	Direct location of the minimum point on intersection seams of potential energy surfaces with equation-of-motion coupled-cluster methods. Molecular Physics, 2007, 105, 2515-2525.	0.8	20
185	Toward Understanding the Redox Properties of Model Chromophores from the Green Fluorescent Protein Family: An Interplay between Conjugation, Resonance Stabilization, and Solvent Effects. Journal of Physical Chemistry B, 2012, 116, 12398-12405.	1.2	20
186	Toward Organic Photohydrides: Excited-State Behavior of 10-Methyl-9-phenyl-9,10-dihydroacridine. Journal of Physical Chemistry B, 2013, 117, 15290-15296.	1.2	20
187	Probing Electronic Wave Functions of Sodium-Doped Clusters: Dyson Orbitals, Anisotropy Parameters, and Ionization Cross-Sections. Journal of Physical Chemistry A, 2016, 120, 9841-9856.	1.1	20
188	Two-photon absorption spectroscopy of stilbene and phenanthrene: Excited-state analysis and comparison with ethylene and toluene. Journal of Chemical Physics, 2017, 146, 174102.	1.2	20
189	Effect of the diradical character on static polarizabilities and two-photon absorption cross sections: A closer look with spin-flip equation-of-motion coupled-cluster singles and doubles method. Journal of Chemical Physics, 2017, 146, 224103.	1.2	20
190	The effect of polarizable environment on two-photon absorption cross sections characterized by the equation-of-motion coupled-cluster singles and doubles method combined with the effective fragment potential approach. Journal of Chemical Physics, 2018, 149, 164109.	1.2	20
191	Vacuum ultraviolet photoionization cross section of the hydroxyl radical. Journal of Chemical Physics, 2018, 148, 184302.	1.2	20
192	Introduction: Theoretical Modeling of Excited State Processes. Chemical Reviews, 2018, 118, 6925-6926.	23.0	20
193	Spin-Forbidden Channels in Reactions of Unsaturated Hydrocarbons with O(³ P). Journal of Physical Chemistry A, 2019, 123, 482-491.	1.1	20
194	In search of molecular ions for optical cycling: a difficult road. Physical Chemistry Chemical Physics, 2020, 22, 17075-17090.	1.3	20
195	A simple molecular orbital picture of RIXS distilled from many-body damped response theory. Journal of Chemical Physics, 2020, 152, 244118.	1.2	20
196	Zooming into π-Stacked Manifolds of Nucleobases: Ionized States of Dimethylated Uracil Dimers. Journal of Physical Chemistry A, 2010, 114, 2001-2009.	1.1	19
197	What Is the Price of Open-Source Software?. Journal of Physical Chemistry Letters, 2015, 6, 2751-2754.	2.1	19
198	Feshbach–Fano approach for calculation of Auger decay rates using equation-of-motion coupled-cluster wave functions. II. Numerical examples and benchmarks. Journal of Chemical Physics, 2021, 154, 084125.	1.2	19

#	Article	IF	CITATIONS
199	Conical for Stepwise, Glancing for Concerted: The Role of the Excited-State Topology in the Three-Body Dissociation of <i>sym</i> -Triazine. Journal of Physical Chemistry A, 2008, 112, 12345-12354.	1.1	18
200	Photoelectron Spectroscopy Study of Quinonimides. Journal of the American Chemical Society, 2017, 139, 11138-11148.	6.6	18
201	Influence of the First Chromophore-Forming Residue on Photobleaching and Oxidative Photoconversion of ECFP and EYFP. International Journal of Molecular Sciences, 2019, 20, 5229.	1.8	18
202	Calculation of spin–orbit couplings using RASCI spinless one-particle density matrices: Theory and applications. Journal of Chemical Physics, 2020, 153, 214107.	1.2	18
203	An assessment of different electronic structure approaches for modeling time-resolved x-ray absorption spectroscopy. Structural Dynamics, 2021, 8, 024101.	0.9	18
204	Electronic structure of halogen-substituted methyl radicals: Excited states of CH2Cl and CH2F. Journal of Chemical Physics, 2001, 115, 7485-7494.	1.2	17
205	Equation-of-motion coupled-cluster method with double electron-attaching operators: Theory, implementation, and benchmarks. Journal of Chemical Physics, 2021, 154, 114115.	1.2	17
206	Reactivity and Structure of the 5-Dehydro-m-xylylene Anion. Journal of Organic Chemistry, 2004, 69, 5735-5741.	1.7	16
207	An ab Initio Exploration of the Bergman Cyclization. Journal of Physical Chemistry A, 2018, 122, 420-430.	1.1	16
208	The Middle Science: Traversing Scale In Complex Many-Body Systems. ACS Central Science, 2021, 7, 1271-1287.	5.3	16
209	libwfa: Wavefunction analysis tools for excited and openâ€shell electronic states. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	6.2	16
210	Rydberg–valence interactions in CH2Cl→CH2+Cl photodissociation: Dependence of absorption probability on ground state vibrational excitation. Journal of Chemical Physics, 2003, 118, 9233-9240.	1.2	15
211	EOM-CC guide to Fock-space travel: the C ₂ edition. Faraday Discussions, 2019, 217, 514-532.	1.6	15
212	Electronic Structure of Halogen-Substituted Methyl Radicals:Â Equilibrium Geometries and Vibrational Spectra of CH2Cl and CH2F. Journal of Physical Chemistry A, 2002, 106, 5169-5176.	1.1	14
213	Efficient Strategies for Accurate Calculations of Electronic Excitation and Ionization Energies: Theory and Application to the Dehydro-m-xylylene Anion. Journal of Physical Chemistry A, 2006, 110, 291-298.	1.1	14
214	Effect of Hyperconjugation on Ionization Energies of Hydroxyalkyl Radicals. Journal of Physical Chemistry A, 2008, 112, 9965-9969.	1.1	14
215	Multiphoton Ionization and Dissociation of Diazirine: A Theoretical and Experimental Study. Journal of Physical Chemistry A, 2009, 113, 7412-7421.	1.1	14
216	Photo-isomerization upshifts the pKa of the Photoactive Yellow Protein chromophore to contribute to photocycle propagation. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 270, 43-52.	2.0	14

#	Article	IF	CITATIONS
217	Electronic Spectra of Tris(2,2′-bipyridine)-M(II) Complex Ions in Vacuo (M = Fe and Os). Inorganic Chemistry, 2017, 56, 7029-7037.	1.9	14
218	Communication: The pole structure of the dynamical polarizability tensor in equation-of-motion coupled-cluster theory. Journal of Chemical Physics, 2018, 149, 141101.	1.2	14
219	Effective Hamiltonians derived from equation-of-motion coupled-cluster wave functions: Theory and application to the Hubbard and Heisenberg Hamiltonians. Journal of Chemical Physics, 2020, 152, 094108.	1.2	14
220	The quest to uncover the nature of benzonitrile anion. Physical Chemistry Chemical Physics, 2020, 22, 5002-5010.	1.3	14
221	Cherry-picking resolvents: A general strategy for convergent coupled-cluster damped response calculations of core-level spectra. Journal of Chemical Physics, 2020, 153, 141104.	1.2	13
222	Interplay between Locally Excited and Charge Transfer States Governs the Photoswitching Mechanism in the Fluorescent Protein Dreiklang. Journal of Physical Chemistry B, 2021, 125, 757-770.	1.2	13
223	Modeling Photoelectron Spectra of CuO, Cu ₂ 0, and CuO ₂ Anions with Equation-of-Motion Coupled-Cluster Methods: An Adventure in Fock Space. Journal of Physical Chemistry A, 2018, 122, 3653-3664.	1.1	12
224	Equation-of-Motion Coupled-Cluster Protocol for Calculating Magnetic Properties: Theory and Applications to Single-Molecule Magnets. Journal of Chemical Theory and Computation, 2021, 17, 4225-4241.	2.3	12
225	The Peril of Politicizing Science. Journal of Physical Chemistry Letters, 2021, 12, 5371-5376.	2.1	12
226	Probing Molecular Chirality of Ground and Electronically Excited States in the UV–vis and X-ray Regimes: An EOM-CCSD Study. Journal of Chemical Theory and Computation, 2022, 18, 1748-1764.	2.3	12
227	Electronic structure of the two dehydro-meta-xylylene triradicals and their derivatives. Chemical Physics Letters, 2006, 425, 196-200.	1.2	11
228	Breaking the Curse of the Non-Dynamical Correlation Problem: The Spin-Flip Method. ACS Symposium Series, 2007, , 89-102.	0.5	11
229	Computational Modeling Reveals the Mechanism of Fluorescent State Recovery in the Reversibly Photoswitchable Protein Dreiklang. Journal of Physical Chemistry B, 2019, 123, 8901-8909.	1.2	11
230	Is Solid Copper Oxalate a Spin Chain or a Mixture of Entangled Spin Pairs?. Journal of Physical Chemistry C, 2021, 125, 7502-7510.	1.5	11
231	A General Sparse Tensor Framework for Electronic Structure Theory. Journal of Chemical Theory and Computation, 2017, 13, 1108-1116.	2.3	10
232	Electronic structure of the π-bonded Al–C2H4 complex: Characterization of the ground and low-lying excited states. Journal of Chemical Physics, 2003, 118, 10912-10918.	1.2	9
233	Theoretical and Experimental Investigations of the Electronic Rydberg States of Diazomethane: Assignments and State Interactions. Journal of Physical Chemistry A, 2007, 111, 4557-4566.	1.1	9
234	Channel branching ratios in CH2CNâ^' photodetachment: Rotational structure and vibrational energy redistribution in autodetachment. Journal of Chemical Physics, 2017, 147, 234309.	1.2	9

#	Article	IF	CITATIONS
235	Magnetic exchange interactions in binuclear and tetranuclear iron(III) complexes described by spinâ€flip DFT and Heisenberg effective Hamiltonians. Journal of Computational Chemistry, 2023, 44, 367-380.	1.5	9
236	How Reproducible Are QM/MM Simulations? Lessons from Computational Studies of the Covalent Inhibition of the SARS-CoV-2 Main Protease by Carmofur. Journal of Chemical Theory and Computation, 2022, 18, 5056-5067.	2.3	9
237	Improving the Design of the Triple-Decker Motif in Red Fluorescent Proteins. Journal of Physical Chemistry B, 2017, 121, 10602-10609.	1.2	8
238	Modeling of the glycine tripeptide cyclization in the Ser65Gly/Tyr66Gly mutant of green fluorescent protein. Mendeleev Communications, 2019, 29, 187-189.	0.6	8
239	Long-Range N–N Bonding by Rydberg Electrons. Journal of Physical Chemistry Letters, 2020, 11, 2284-2290.	2.1	8
240	Electronically excited and ionized states of the CH2CH2OH radical: A theoretical study. Journal of Chemical Physics, 2010, 132, 114308.	1.2	7
241	Analysis and tuning of libtensor framework on multicore architectures. , 2014, , .		7
242	The effects of resonance delocalization and the extent of <i>Ï€</i> system on ionization energies of model fluorescent proteins chromophores. International Journal of Quantum Chemistry, 2015, 115, 1258-1264.	1.0	7
243	Electronic Structure and Rydberg–Core Interactions in Hydroxycarbene and Methylhydroxycarbene. Journal of Physical Chemistry A, 2018, 122, 6176-6182.	1.1	7
244	The elusive dynamics of aqueous permanganate photochemistry. Physical Chemistry Chemical Physics, 2020, 22, 10043-10055.	1.3	7
245	The orbital picture of the first dipole hyperpolarizability from many-body response theory. Journal of Chemical Physics, 2021, 154, 184109.	1.2	7
246	Role of the Electron–Dipole Interaction in Photodetachment Angular Distributions. Journal of Physical Chemistry Letters, 2021, 12, 10086-10092.	2.1	7
247	Cross-scale efficient tensor contractions for coupled cluster computations through multiple programming model backends. Journal of Parallel and Distributed Computing, 2017, 106, 92-105.	2.7	6
248	To Be or Not To Be a Molecular Ion: The Role of the Solvent in Photoionization of Arginine. Journal of Physical Chemistry Letters, 2019, 10, 1860-1865.	2.1	6
249	Scientists must resist cancel culture. Nachrichten Aus Der Chemie, 2022, 70, 12-14.	0.0	6
250	Reducedâ€cost sparsityâ€exploiting algorithm for solving coupledâ€cluster equations. Journal of Computational Chemistry, 2016, 37, 1059-1067.	1.5	5
251	Photoelectron photofragment coincidence spectroscopy of aromatic carboxylates: benzoate and <i>p</i> -coumarate. Physical Chemistry Chemical Physics, 2021, 23, 18414-18424.	1.3	5
252	Conversion of He(2 ³ <i>S</i>) to He ₂ (<i>a</i> ³ Σ _{<i>u</i>} ⁺) in Liquid Helium. Journal of Physical Chemistry Letters, 2018, 9, 6017-6023.	2.1	4

#	Article	IF	CITATIONS
253	Quantum computing and quantum information storage. Physical Chemistry Chemical Physics, 2021, 23, 6341-6343.	1.3	4
254	Royal Society of Chemistry Provides Guidelines for Censorship to its Editors. Chemistry International, 2022, 44, 32-34.	0.3	4
255	Vibronic Structure and Ion Core Interactions in Rydberg States of Diazomethane:  An Experimental and Theoretical Investigation. Journal of Physical Chemistry A, 2007, 111, 13347-13357.	1.1	3
256	Measurement of heavy ion energy at the test facility of electronic components. Instruments and Experimental Techniques, 2014, 57, 11-16.	0.1	3
257	Distinct Electron Conductance Regimes in Bacterial Decaheme Cytochromes. Angewandte Chemie, 2018, 130, 6921-6925.	1.6	3
258	Autocorrelation of electronic wave-functions: a new approach for describing the evolution of electronic structure in the course of dynamics. Molecular Physics, 2018, 116, 2512-2523.	0.8	2
259	Dissociative electron attachment in C2H via electronic resonances. Molecular Physics, 0, , .	0.8	2
260	Q-Chem 2.0: a high-performance ab initio electronic structure program package. , 2000, 21, 1532.		2
261	Triplet Excitons in Small Helium Clusters. Journal of Physical Chemistry A, 2019, 123, 6113-6122.	1.1	1
262	Preface to the Robert Benny Gerber Festschrift. Journal of Physical Chemistry A, 2009, 113, 7161-7162.	1.1	0
263	Spectroscopy and Fragmentation of Undercoordinated Bromoiridates. Journal of Physical Chemistry A, 2011, 115, 13482-13488.	1.1	0
264	Tribute to Hanna Reisler. Journal of Physical Chemistry A, 2019, 123, 6381-6383.	1.1	0
265	Exotic systems: general discussion. Faraday Discussions, 2019, 217, 601-622.	1.6	0